Beyond structural bioinformatics for genomics with dynamics characterization of an expanded KRAS mutational landscape.
Cancer
Genomics
KRAS
Molecular dynamics
Rare disease
Journal
Computational and structural biotechnology journal
ISSN: 2001-0370
Titre abrégé: Comput Struct Biotechnol J
Pays: Netherlands
ID NLM: 101585369
Informations de publication
Date de publication:
2023
2023
Historique:
received:
05
06
2023
revised:
04
10
2023
accepted:
04
10
2023
medline:
16
10
2023
pubmed:
16
10
2023
entrez:
16
10
2023
Statut:
epublish
Résumé
Current capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions. Because KRAS-altered tumors frequently harbor one of three classic hotspot mutations, nearly all studies have focused on these mutations, leaving significant functional ambiguity across the broader KRAS genomic landscape observed in cancer and non-cancer diseases. Herein, we extend structural bioinformatics with molecular simulations to study an expanded landscape of 86 KRAS mutations. We identify multiple coordinated changes strongly associated with experimentally established KRAS biophysical and biochemical properties. The patterns we observe span hotspot and non-hotspot alterations, which can all dysregulate Switch regions, producing mutation-restricted conformations with different effector binding propensities. We experimentally measured mutation thermostability and identified shared and distinct patterns with simulations. Our results indicate mutation-specific conformations, which show potential for future research into how these alterations reverberate into different molecular and cellular functions. The data we present is not predictable using current genomic tools, demonstrating the added functional information derived from molecular simulations for interpreting human genetic variation.
Identifiants
pubmed: 37841325
doi: 10.1016/j.csbj.2023.10.003
pii: S2001-0370(23)00359-8
pmc: PMC10570560
doi:
Types de publication
Journal Article
Langues
eng
Pagination
4790-4803Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM128840
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2023 The Authors.
Déclaration de conflit d'intérêts
BV declares ownership interests in Protein Foundry and XLock Biosciences. All other authors declare no conflicts of interest.
Références
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22122-22131
pubmed: 31611389
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8
pubmed: 15980494
Bioinformatics. 2006 Nov 1;22(21):2695-6
pubmed: 16940322
J Comput Chem. 2009 Jul 30;30(10):1545-614
pubmed: 19444816
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Cell Chem Biol. 2017 Dec 21;24(12):1455-1466.e14
pubmed: 29033317
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
J Comput Chem. 2004 Aug;25(11):1400-15
pubmed: 15185334
Nucleic Acids Res. 2000 Jan 1;28(1):235-42
pubmed: 10592235
Sci Rep. 2017 Jun 16;7(1):3666
pubmed: 28623339
J Chem Inf Model. 2021 Apr 26;61(4):1954-1969
pubmed: 33739090
Cell Rep. 2019 Aug 6;28(6):1538-1550.e7
pubmed: 31390567
J Comput Chem. 2005 Dec;26(16):1781-802
pubmed: 16222654
Sci Rep. 2016 May 16;6:25931
pubmed: 27180801
J Phys Chem B. 1998 Apr 30;102(18):3586-616
pubmed: 24889800
Comput Struct Biotechnol J. 2021 Dec 11;20:117-127
pubmed: 34976316
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515
pubmed: 30395287
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41
pubmed: 11517324
PLoS Comput Biol. 2018 Sep 10;14(9):e1006458
pubmed: 30199525
Bioinformatics. 2021 Jun 16;37(10):1367-1375
pubmed: 33226070
J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273
pubmed: 23341755
Sci Rep. 2019 Aug 13;9(1):11730
pubmed: 31409810
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8895-900
pubmed: 24889603
Comput Biol Med. 2021 Aug;135:104639
pubmed: 34247129