Role of Cardiac Energetics in Aortic Stenosis Disease Progression: Identifying the High-risk Metabolic Phenotype.
aortic valve stenosis
magnetic resonance imaging
metabolism
Journal
Circulation. Cardiovascular imaging
ISSN: 1942-0080
Titre abrégé: Circ Cardiovasc Imaging
Pays: United States
ID NLM: 101479935
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
medline:
23
10
2023
pubmed:
17
10
2023
entrez:
17
10
2023
Statut:
ppublish
Résumé
Severe aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and cardiac metabolic alterations with evidence of steatosis and impaired myocardial energetics. Despite this common phenotype, there is an unexplained and wide individual heterogeneity in the degree of hypertrophy and progression to myocardial fibrosis and heart failure. We sought to determine whether the cardiac metabolic state may underpin this variability. We recruited 74 asymptomatic participants with AS and 13 healthy volunteers. Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to adenosine triphosphate ratio. Myocardial lipid content was determined using proton spectroscopy. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging. Phosphocreatine/adenosine triphosphate was reduced early and significantly across the LV wall thickness quartiles (Q2, 1.50 [1.21-1.71] versus Q1, 1.64 [1.53-1.94]) with a progressive decline with increasing disease severity (Q4, 1.48 [1.18-1.70]; A gradient of myocardial energetic deficit and steatosis exists across the spectrum of hypertrophied AS hearts, and these metabolic changes precede irreversible LV remodeling and subclinical dysfunction. As such, cardiac metabolism may play an important and potentially causal role in disease progression.
Sections du résumé
BACKGROUND
Severe aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and cardiac metabolic alterations with evidence of steatosis and impaired myocardial energetics. Despite this common phenotype, there is an unexplained and wide individual heterogeneity in the degree of hypertrophy and progression to myocardial fibrosis and heart failure. We sought to determine whether the cardiac metabolic state may underpin this variability.
METHODS
We recruited 74 asymptomatic participants with AS and 13 healthy volunteers. Cardiac energetics were measured using phosphorus spectroscopy to define the myocardial phosphocreatine to adenosine triphosphate ratio. Myocardial lipid content was determined using proton spectroscopy. Cardiac function was assessed by cardiovascular magnetic resonance cine imaging.
RESULTS
Phosphocreatine/adenosine triphosphate was reduced early and significantly across the LV wall thickness quartiles (Q2, 1.50 [1.21-1.71] versus Q1, 1.64 [1.53-1.94]) with a progressive decline with increasing disease severity (Q4, 1.48 [1.18-1.70];
CONCLUSIONS
A gradient of myocardial energetic deficit and steatosis exists across the spectrum of hypertrophied AS hearts, and these metabolic changes precede irreversible LV remodeling and subclinical dysfunction. As such, cardiac metabolism may play an important and potentially causal role in disease progression.
Identifiants
pubmed: 37847766
doi: 10.1161/CIRCIMAGING.122.014863
pmc: PMC10581424
doi:
Substances chimiques
Phosphocreatine
020IUV4N33
Adenosine Triphosphate
8L70Q75FXE
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e014863Subventions
Organisme : Wellcome Trust
ID : 221805/Z/20/Z
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Références
Front Physiol. 2019 Apr 16;10:435
pubmed: 31040794
Circulation. 2020 Jun 16;141(24):1971-1985
pubmed: 32438845
Cardiology. 2016;133(3):157-62
pubmed: 26594908
Radiographics. 2012 Sep-Oct;32(5):1381-98
pubmed: 22977026
MAGMA. 1999 Oct;9(1-2):85-91
pubmed: 10555178
J Am Heart Assoc. 2019 Feb 19;8(4):e010926
pubmed: 30764689
Eur Heart J. 2020 May 21;41(20):1903-1914
pubmed: 32049275
J Am Soc Echocardiogr. 2017 Jul;30(7):647-658.e2
pubmed: 28511859
Heart. 2010 Jan;96(2):106-12
pubmed: 19710026
PLoS One. 2017 Sep 22;12(9):e0185356
pubmed: 28938003
Int J Cardiol. 2020 Jan 1;298:128-134
pubmed: 31500864
Magn Reson Med. 2011 Sep;66(3):619-24
pubmed: 21721038
J Lipid Res. 2009 Nov;50(11):2314-23
pubmed: 19470430
Circ Cardiovasc Imaging. 2013 Sep;6(5):808-16
pubmed: 23833283
Circ Heart Fail. 2014 Nov;7(6):1022-31
pubmed: 25236884
Curr Cardiol Rev. 2009 Aug;5(3):243-50
pubmed: 20676284
Cardiovasc Res. 2000 Feb;45(3):704-12
pubmed: 10728392
N Engl J Med. 1990 May 31;322(22):1561-6
pubmed: 2139921
NMR Biomed. 2009 May;22(4):405-13
pubmed: 19023865
Circulation. 2001 Mar 20;103(11):1570-6
pubmed: 11257087
NMR Biomed. 2008 Oct;21(8):793-8
pubmed: 18512846
Circulation. 2004 Apr 6;109(13):1580-9
pubmed: 15066961
J Cardiovasc Magn Reson. 2013 May 01;15:35
pubmed: 23634753
J Cardiovasc Magn Reson. 2010 Nov 19;12:69
pubmed: 21092095
Eur Heart J Cardiovasc Imaging. 2015 Jun;16(6):642-52
pubmed: 25564395
J Am Soc Echocardiogr. 2008 Dec;21(12):1309-17
pubmed: 19041574
Circ Res. 2013 Aug 16;113(5):603-16
pubmed: 23948585
J Clin Invest. 2001 Apr;107(7):813-22
pubmed: 11285300
Am J Physiol Heart Circ Physiol. 2017 Sep 1;313(3):H597-H616
pubmed: 28646030
Lancet. 1991 Oct 19;338(8773):973-6
pubmed: 1681342
Circulation. 2012 Jul 3;126(1):112-7
pubmed: 22753532
J Cardiovasc Magn Reson. 2005;7(5):775-82
pubmed: 16353438