Constructing training set using distance between learnt graphical models of time series data on patient physiology, to predict disease scores.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2023
2023
Historique:
received:
27
06
2023
accepted:
19
09
2023
medline:
23
10
2023
pubmed:
19
10
2023
entrez:
19
10
2023
Statut:
epublish
Résumé
Interventional endeavours in medicine include prediction of a score that parametrises a new subject's susceptibility to a given disease, at the pre-onset stage. Here, for the first time, we provide reliable learning of such a score in the context of the potentially-terminal disease VOD, that often arises after bone marrow transplants. Indeed, the probability of surviving VOD, is correlated with early intervention. In our work, the VOD-score of each patient in a retrospective cohort, is defined as the distance between the (posterior) probability of a random graph variable-given the inter-variable partial correlation matrix of the time series data on variables that represent different aspects of patient physiology-and that given such time series data of an arbitrarily-selected reference patient. Such time series data is recorded from a pre-transplant to a post-transplant time, for each patient in this cohort, though the data available for distinct patients bear differential temporal coverage, owing to differential patient longevities. Each graph is a Soft Random Geometric Graph drawn in a probabilistic metric space, and the computed inter-graph distance is oblivious to the length of the time series data. The VOD-score learnt in this way, and the corresponding pre-transplant parameter vector of each patient in this retrospective cohort, then results in the training data, using which we learn the function that takes VOD-score as its input, and outputs the vector of pre-transplant parameters. We model this function with a vector-variate Gaussian Process, the covariance structure of which is kernel parametrised. Such modelling is easier than if the score variable were the output. Then for any prospective patient, whose pre-transplant variables are known, we learn the VOD-score (and the hyperparameters of the covariance kernel), using Markov Chain Monte Carlo based inference.
Identifiants
pubmed: 37856497
doi: 10.1371/journal.pone.0292404
pii: PONE-D-23-20096
pmc: PMC10586698
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0292404Informations de copyright
Copyright: © 2023 Chakrabarty et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Br J Haematol. 2018 Jun;181(6):816-827
pubmed: 29767845
J Stat Phys. 2018;172(3):679-700
pubmed: 30996473
Bone Marrow Transplant. 1991 Jun;7(6):467-74
pubmed: 1908340
World J Transplant. 2012 Apr 24;2(2):27-34
pubmed: 24175193
Biol Blood Marrow Transplant. 2010 Feb;16(2):157-68
pubmed: 19766729
BMC Med. 2019 Oct 29;17(1):195
pubmed: 31665002
Bone Marrow Transplant. 2022 Apr;57(4):538-546
pubmed: 35075247
Bone Marrow Transplant. 2010 Aug;45(8):1287-93
pubmed: 20010866
Bone Marrow Transplant. 2022 May;57(5):699-700
pubmed: 35292752
Ann Intern Med. 1993 Feb 15;118(4):255-67
pubmed: 8420443
EJHaem. 2022 Nov 29;4(1):199-206
pubmed: 36819156
Blood. 2008 Aug 1;112(3):504-10
pubmed: 18480425
Hepatology. 1984 Jan-Feb;4(1):116-22
pubmed: 6363247
Lancet Haematol. 2023 May;10(5):e309-e311
pubmed: 37001535
Ann Rheum Dis. 2004 Dec;63(12):1702-3
pubmed: 15547102
Int J Hematol. 2014 Jun;99(6):766-72
pubmed: 24715523
Blood Rev. 1993 Mar;7(1):43-51
pubmed: 8467232
Bone Marrow Transplant. 2019 Dec;54(12):1951-1962
pubmed: 30804485
Bone Marrow Transplant. 2003 Jul;32(1):79-87
pubmed: 12815482
Liver Transpl. 2011 Jul;17(7):798-808
pubmed: 21351239
Bone Marrow Transplant. 2016 Jul;51(7):906-12
pubmed: 27183098
Biol Blood Marrow Transplant. 2016 Mar;22(3):400-9
pubmed: 26431626
Mayo Clin Proc. 2003 May;78(5):589-98
pubmed: 12744547
Ann Intern Med. 1979 Feb;90(2):158-64
pubmed: 36019
Bone Marrow Transplant. 2018 Feb;53(2):138-145
pubmed: 28759025
Bone Marrow Transplant. 1999 Oct;24(8):891-5
pubmed: 10516702
Bone Marrow Transplant. 1998 Jun;21(11):1125-30
pubmed: 9645575
Front Immunol. 2020 Apr 03;11:489
pubmed: 32318059
J Clin Epidemiol. 2016 Jan;69:245-7
pubmed: 25981519
J Grad Med Educ. 2013 Dec;5(4):541-2
pubmed: 24454995
Br J Haematol. 2017 Jul;178(1):112-118
pubmed: 28444784
BMC Med. 2019 Dec 16;17(1):230
pubmed: 31842878
Bone Marrow Transplant. 2009 Oct;44(7):441-7
pubmed: 19308033
Clin Lymphoma. 2002 Mar;2 Suppl 1:S35-9
pubmed: 11970769
Transplant Cell Ther. 2023 Mar;29(3):166.e1-166.e10
pubmed: 36574581
Blood. 1998 Nov 15;92(10):3599-604
pubmed: 9808553
Blood Adv. 2022 Jan 11;6(1):181-188
pubmed: 34666352
Proc Natl Acad Sci U S A. 1942 Dec;28(12):535-7
pubmed: 16588583
Blood. 1995 Jun 1;85(11):3005-20
pubmed: 7756636
Cancer. 2001 Jul 15;92(2):406-13
pubmed: 11466696
Int J Lab Hematol. 2019 Dec;41(6):717-725
pubmed: 31498973
Biol Blood Marrow Transplant. 2019 Jul;25(7):1271-1280
pubmed: 30797942