Microtubule-Mediated Regulation of β
Rats
Animals
In Situ Hybridization, Fluorescence
Heart Failure
/ metabolism
Receptors, Adrenergic, beta-2
/ genetics
Myocardial Infarction
/ metabolism
Myocytes, Cardiac
/ metabolism
Cyclic AMP
/ metabolism
Receptors, Adrenergic, beta-1
/ metabolism
Microtubules
/ metabolism
RNA, Messenger
/ genetics
Adenosine Monophosphate
/ metabolism
animal
cardiomyocytes
heart failure
infarction
microtubules
Journal
Circulation research
ISSN: 1524-4571
Titre abrégé: Circ Res
Pays: United States
ID NLM: 0047103
Informations de publication
Date de publication:
10 Nov 2023
10 Nov 2023
Historique:
medline:
13
11
2023
pubmed:
23
10
2023
entrez:
23
10
2023
Statut:
ppublish
Résumé
β The localization pattern of β-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on β-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible β-AR translation sites in cardiomyocytes. The mechanism by which β-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes. β Asymmetrical microtubule-dependent trafficking dictates differential β
Sections du résumé
BACKGROUND
BACKGROUND
β
METHODS
METHODS
The localization pattern of β-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on β-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible β-AR translation sites in cardiomyocytes. The mechanism by which β-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes.
RESULTS
RESULTS
β
CONCLUSIONS
CONCLUSIONS
Asymmetrical microtubule-dependent trafficking dictates differential β
Identifiants
pubmed: 37869877
doi: 10.1161/CIRCRESAHA.123.323174
pmc: PMC10635332
doi:
Substances chimiques
Receptors, Adrenergic, beta-2
0
Cyclic AMP
E0399OZS9N
Receptors, Adrenergic, beta-1
0
RNA, Messenger
0
Adenosine Monophosphate
415SHH325A
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
944-958Références
Nature. 2002 Jan 10;415(6868):206-12
pubmed: 11805844
Br J Pharmacol. 2004 Mar;141(5):813-24
pubmed: 14757703
Nat Commun. 2017 Apr 20;8:15031
pubmed: 28425435
Cell. 2005 Jul 15;122(1):97-106
pubmed: 16009136
Circ Res. 2010 Aug 20;107(4):520-31
pubmed: 20576937
J Mol Cell Cardiol. 2014 Feb;67:38-48
pubmed: 24345421
Circ Res. 1986 Sep;59(3):297-309
pubmed: 2876788
Circ Res. 2021 Jun 25;129(1):81-94
pubmed: 33902292
Circulation. 2014 Apr 29;129(17):1742-50
pubmed: 24519927
Card Fail Rev. 2017 Apr;3(1):7-11
pubmed: 28785469
Cell. 2013 Jan 17;152(1-2):172-82
pubmed: 23332753
Mol Pharmacol. 2001 Sep;60(3):577-83
pubmed: 11502890
J Biol Chem. 1994 Feb 11;269(6):4497-505
pubmed: 8308019
Pharmacol Rev. 1999 Dec;51(4):651-90
pubmed: 10581327
Curr Biol. 2010 Apr 27;20(8):697-702
pubmed: 20399099
Br J Pharmacol. 2021 Apr;178(7):1574-1587
pubmed: 33475150
Nat Nanotechnol. 2019 Jan;14(1):80-88
pubmed: 30510280
J Mol Cell Cardiol. 2018 Mar;116:16-28
pubmed: 29371135
Cardiovasc Res. 2017 Jun 01;113(7):770-782
pubmed: 28505272
Nat Rev Cardiol. 2016 Jun;13(6):368-78
pubmed: 26935038
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12240-5
pubmed: 25092313
Exp Physiol. 2019 Aug;104(8):1237-1249
pubmed: 31116459
Proc Biol Sci. 2011 Sep 22;278(1719):2714-23
pubmed: 21697171
Neuron. 2006 Feb 2;49(3):349-56
pubmed: 16446139
FASEB J. 2012 Jun;26(6):2531-7
pubmed: 22375019
Circulation. 1993 Feb;87(2):454-63
pubmed: 8381058
Cardiovasc Res. 2019 Mar 1;115(3):546-555
pubmed: 30165515
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6854-9
pubmed: 19342485
Cell Rep. 2012 Feb 23;1(2):179-84
pubmed: 22832165
Pharmacol Ther. 1993 Dec;60(3):405-30
pubmed: 7915424
Nature. 1984 Nov 15-21;312(5991):237-42
pubmed: 6504138
J Cell Sci. 2010 Jan 1;123(Pt 1):95-106
pubmed: 20016070
Trends Pharmacol Sci. 2000 Nov;21(11):426-31
pubmed: 11121573
Br J Pharmacol. 2002 May;136(2):217-29
pubmed: 12010770
Sci Rep. 2019 Jun 4;9(1):8267
pubmed: 31164708
Nat Commun. 2021 Mar 11;12(1):1547
pubmed: 33707436
Circulation. 2012 Aug 7;126(6):697-706
pubmed: 22732314
Circulation. 2001 Nov 13;104(20):2485-91
pubmed: 11705829
JACC Basic Transl Sci. 2016 Apr;1(3):122-130
pubmed: 27482548
Sci Rep. 2021 Mar 1;11(1):4840
pubmed: 33649357
Basic Res Cardiol. 2021 Oct 28;116(1):63
pubmed: 34713358
Cell. 2016 Jun 30;166(1):181-92
pubmed: 27321671
Science. 2003 Jun 6;300(5625):1530-2
pubmed: 12791980
Cells. 2019 Nov 29;8(12):
pubmed: 31795419
J Biol Chem. 2010 Oct 29;285(44):33816-25
pubmed: 20739277
J Clin Invest. 1993 Mar;91(3):907-14
pubmed: 8383704
Science. 2010 Mar 26;327(5973):1653-7
pubmed: 20185685
Front Physiol. 2021 Sep 09;12:718404
pubmed: 34566684
Trends Pharmacol Sci. 2004 Jul;25(7):358-65
pubmed: 15219978
Circ Res. 2006 Nov 10;99(10):1084-91
pubmed: 17038640
Cell. 2011 Feb 18;144(4):551-65
pubmed: 21335237
J Mol Cell Cardiol. 2012 Feb;52(2):388-400
pubmed: 21740911