The plant stress hormone jasmonic acid evokes defensive responses in streptomycetes.
Streptomyces
amino acid conjugation
antibiotic production
jasmonic acid conditioning
plant hormone
Journal
Applied and environmental microbiology
ISSN: 1098-5336
Titre abrégé: Appl Environ Microbiol
Pays: United States
ID NLM: 7605801
Informations de publication
Date de publication:
29 Nov 2023
29 Nov 2023
Historique:
medline:
30
11
2023
pubmed:
30
10
2023
entrez:
30
10
2023
Statut:
ppublish
Résumé
Microorganisms that live on or inside plants can influence plant growth and health. Among the plant-associated bacteria, streptomycetes play an important role in defense against plant diseases, but the underlying mechanisms are not well understood. Here, we demonstrate that the plant hormones jasmonic acid (JA) and methyl jasmonate directly affect the life cycle of streptomycetes by modulating antibiotic synthesis and promoting faster development. Moreover, the plant hormones specifically stimulate the synthesis of the polyketide antibiotic actinorhodin in
Identifiants
pubmed: 37902333
doi: 10.1128/aem.01239-23
pmc: PMC10686085
doi:
Substances chimiques
Plant Growth Regulators
0
jasmonic acid
6RI5N05OWW
Amino Acids
0
Anti-Bacterial Agents
0
Hormones
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0123923Subventions
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
ID : 14221
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
FEMS Microbiol Rev. 2012 Jul;36(4):862-76
pubmed: 22091965
Planta. 2007 Jun;226(1):159-67
pubmed: 17273867
Nat Biotechnol. 2012 Oct;30(10):918-20
pubmed: 23051804
ISME J. 2015 Jan;9(1):195-206
pubmed: 25050523
Life Sci. 1998;62(12):1065-8
pubmed: 9519808
Plant Physiol. 2014 Mar;164(3):1151-60
pubmed: 24429214
Biosci Biotechnol Biochem. 2004 Jul;68(7):1461-6
pubmed: 15277750
J Ind Microbiol Biotechnol. 2014 Feb;41(2):371-86
pubmed: 23907251
Metabolomics. 2016;12:90
pubmed: 27073352
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6388-6393
pubmed: 28559313
Analyst. 2015 Nov 21;140(22):7696-709
pubmed: 26462298
Science. 2015 Aug 21;349(6250):860-4
pubmed: 26184915
Commun Chem. 2022 Feb 3;5(1):14
pubmed: 36697563
Phytochemistry. 2014 Dec;108:35-46
pubmed: 25457500
Nat Rev Drug Discov. 2007 Jan;6(1):29-40
pubmed: 17159923
J Gen Microbiol. 1976 Oct;96(2):289-97
pubmed: 993778
PLoS One. 2013;8(2):e56457
pubmed: 23424661
FEMS Microbiol Rev. 2017 May 1;41(3):392-416
pubmed: 28521336
FEMS Microbiol Ecol. 2016 Aug;92(8):
pubmed: 27279415
Planta. 2003 Feb;216(4):665-73
pubmed: 12569409
Phytochemistry. 2011 Dec;72(17):2097-112
pubmed: 21880337
FEBS J. 2009 Jan;276(1):58-75
pubmed: 19016852
Int J Syst Evol Microbiol. 2019 Apr;69(4):899-908
pubmed: 30625109
Curr Opin Pharmacol. 2008 Oct;8(5):557-63
pubmed: 18524678
Nature. 2012 Aug 2;488(7409):91-5
pubmed: 22859207
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
J Antibiot (Tokyo). 1985 Jan;38(1):128-31
pubmed: 3972724
mSystems. 2022 Jun 28;7(3):e0006122
pubmed: 35575488
Genome Announc. 2018 May 3;6(18):
pubmed: 29724850
J Exp Bot. 2017 Mar 1;68(6):1371-1385
pubmed: 28069779
Nat Biotechnol. 2016 Aug 9;34(8):828-837
pubmed: 27504778
Clin Infect Dis. 2009 Jan 1;48(1):1-12
pubmed: 19035777
Science. 2011 May 27;332(6033):1097-100
pubmed: 21551032
Chem Biol. 2001 Aug;8(8):817-29
pubmed: 11514230
Int J Mol Sci. 2018 Aug 27;19(9):
pubmed: 30150593
Microbiology (Reading). 2014 Aug;160(Pt 8):1714-1725
pubmed: 24794971
Annu Rev Phytopathol. 2017 Aug 4;55:565-589
pubmed: 28645232
Mol Plant. 2017 Sep 12;10(9):1159-1173
pubmed: 28760569
Microb Biotechnol. 2011 Mar;4(2):207-15
pubmed: 21342466
Antonie Van Leeuwenhoek. 2018 May;111(5):679-690
pubmed: 29335919
Nature. 2012 Aug 2;488(7409):86-90
pubmed: 22859206
BMC Bioinformatics. 2010 Jul 23;11:395
pubmed: 20650010
Nat Rev Microbiol. 2015 Aug;13(8):509-23
pubmed: 26119570