Advances in mass spectrometry to unravel the structure and function of protein condensates.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 18 04 2023
accepted: 09 08 2023
medline: 7 12 2023
pubmed: 1 11 2023
entrez: 1 11 2023
Statut: ppublish

Résumé

Membrane-less organelles assemble through liquid-liquid phase separation (LLPS) of partially disordered proteins into highly specialized microenvironments. Currently, it is challenging to obtain a clear understanding of the relationship between the structure and function of phase-separated protein assemblies, owing to their size, dynamics and heterogeneity. In this Perspective, we discuss recent advances in mass spectrometry (MS) that offer several promising approaches for the study of protein LLPS. We survey MS tools that have provided valuable insights into other insoluble protein systems, such as amyloids, and describe how they can also be applied to study proteins that undergo LLPS. On the basis of these recent advances, we propose to integrate MS into the experimental workflow for LLPS studies. We identify specific challenges and future opportunities for the analysis of protein condensate structure and function by MS.

Identifiants

pubmed: 37907762
doi: 10.1038/s41596-023-00900-0
pii: 10.1038/s41596-023-00900-0
doi:

Substances chimiques

Intrinsically Disordered Proteins 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3653-3661

Subventions

Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2019-01961
Organisme : Cancerfonden (Swedish Cancer Society)
ID : 22 2033
Organisme : Novo Nordisk Foundation Center for Basic Metabolic Research (NovoNordisk Foundation Center for Basic Metabolic Research)
ID : NNF19OC0055700
Organisme : Stiftelsen Olle Engkvist Byggmästare
ID : OE2022

Informations de copyright

© 2023. Springer Nature Limited.

Références

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081 pmcid: 7434221 doi: 10.1038/nrm.2017.7
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
pubmed: 19460965 doi: 10.1126/science.1172046
Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).
pubmed: 28340338 pmcid: 5432200 doi: 10.1016/j.cell.2017.02.007
Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).
pubmed: 32873929 doi: 10.1038/s41580-020-0272-6
Wu, H. & Fuxreiter, M. The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165, 1055–1066 (2016).
pubmed: 27203110 pmcid: 4878688 doi: 10.1016/j.cell.2016.05.004
Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).
pubmed: 34931046 doi: 10.1038/s41557-021-00840-w
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018).
pubmed: 29961577 pmcid: 6063760 doi: 10.1016/j.cell.2018.06.006
Hardenberg, M., Horvath, A., Ambrus, V., Fuxreiter, M. & Vendruscolo, M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc. Natl Acad. Sci. USA 117, 33254–33262 (2021).
doi: 10.1073/pnas.2007670117
Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).
pubmed: 32029630 pmcid: 7297187 doi: 10.1126/science.aaw8653
Mitrea, D. M. et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5, e13571 (2016).
pubmed: 26836305 pmcid: 4786410 doi: 10.7554/eLife.13571
Mitrea, D. M. & Kriwacki, R. W. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 14, 1 (2016).
pubmed: 26727894 pmcid: 4700675 doi: 10.1186/s12964-015-0125-7
Murthy, A. C. & Fawzi, N. L. The (un)structural biology of biomolecular liquid–liquid phase separation using NMR spectroscopy. J. Biol. Chem. 295, 2375–2384 (2020).
pubmed: 31911439 pmcid: 7039561 doi: 10.1074/jbc.REV119.009847
Villegas, J. A., Heidenreich, M. & Levy, E. D. Molecular and environmental determinants of biomolecular condensate formation. Nat. Chem. Biol. 18, 1319–1329 (2022).
pubmed: 36400992 doi: 10.1038/s41589-022-01175-4
Conicella, A. E. et al. TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proc. Natl Acad. Sci. Usa. 117, 5883–5894 (2020).
pubmed: 32132204 pmcid: 7084079 doi: 10.1073/pnas.1912055117
Wang, A. et al. A single N‐terminal phosphomimic disrupts TDP‐43 polymerization, phase separation, and RNA splicing. EMBO J. 37, e97452 (2018).
pubmed: 29438978 pmcid: 5830921 doi: 10.15252/embj.201797452
Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).
pubmed: 27545621 pmcid: 5014597 doi: 10.1016/j.str.2016.07.007
Afroz, T. et al. Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat. Commun. 8, 45 (2017).
pubmed: 28663553 pmcid: 5491494 doi: 10.1038/s41467-017-00062-0
Lössl, P., van de Waterbeemd, M. & Heck, A. J. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 35, 2634–2657 (2016).
pubmed: 27797822 pmcid: 5167345 doi: 10.15252/embj.201694818
Benesch, J. L. P. Collisional activation of protein complexes: picking up the pieces. J. Am. Soc. Mass Spectrom. 20, 341–348 (2009).
pubmed: 19110440 doi: 10.1016/j.jasms.2008.11.014
Jurneczko, E. & Barran, P. E. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 136, 20–28 (2011).
pubmed: 20820495 doi: 10.1039/C0AN00373E
Politis, A. et al. A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat. Methods 11, 403–406 (2014).
pubmed: 24509631 pmcid: 3972104 doi: 10.1038/nmeth.2841
Marklund, E. G., Degiacomi, M. T., Robinson, C. V., Baldwin, A. J. & Benesch, J. L. P. Collision cross sections for structural proteomics. Structure 23, 791–799 (2015).
pubmed: 25800554 doi: 10.1016/j.str.2015.02.010
Sinz, A., Arlt, C., Chorev, D. & Sharon, M. Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology. Protein Sci. 24, 1193–1209 (2015).
pubmed: 25970732 pmcid: 4534171 doi: 10.1002/pro.2696
Piersimoni, L. & Sinz, A. Cross-linking/mass spectrometry at the crossroads. Anal. Bioanal. Chem. 412, 5981–5987 (2020).
pubmed: 32472143 pmcid: 7442761 doi: 10.1007/s00216-020-02700-x
Costeira-Paulo, J. et al. Lipids shape the electron acceptor-binding site of the peripheral membrane protein dihydroorotate dehydrogenase. Cell Chem. Biol. 25, 309–317.e4 (2018).
pubmed: 29358052 pmcid: 5856493 doi: 10.1016/j.chembiol.2017.12.012
Moghadamchargari, Z. et al. Intrinsic GTPase activity of K-RAS monitored by native mass spectrometry. Biochemistry 58, 3396–3405 (2019).
pubmed: 31306575 doi: 10.1021/acs.biochem.9b00532
Van De Waterbeemd, M. et al. High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat. Methods 14, 283–286 (2017).
pubmed: 28114288 doi: 10.1038/nmeth.4147
Tüting, C., Iacobucci, C., Ihling, C. H., Kastritis, P. L. & Sinz, A. Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Sci. Rep. 10, 12618 (2020).
pubmed: 32724211 pmcid: 7387497 doi: 10.1038/s41598-020-69313-3
Kiosze-Becker, K. et al. Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nat. Commun. 7, 13248 (2016).
pubmed: 27824037 pmcid: 5105147 doi: 10.1038/ncomms13248
Aquilina, J. A., Benesch, J. L. P., Bateman, O. A., Slingsby, C. & Robinson, C. V. Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in αB-crystallin. Proc. Natl Acad. Sci. Usa. 100, 10611–10616 (2003).
pubmed: 12947045 pmcid: 196852 doi: 10.1073/pnas.1932958100
Baldwin, A. J. et al. The polydispersity of αb-crystallin is rationalized by an interconverting polyhedral architecture. Structure 19, 1855–1863 (2011).
pubmed: 22153508 doi: 10.1016/j.str.2011.09.015
Stuchfield, D. et al. The use of mass spectrometry to examine IDPs: unique insights and caveats. Methods Enzymol. 611, 459–502 (2018).
pubmed: 30471696 doi: 10.1016/bs.mie.2018.09.038
Stuchfield, D. & Barran, P. Unique insights to intrinsically disordered proteins provided by ion mobility mass spectrometry. Curr. Opin. Chem. Biol. 42, 177–185 (2018).
pubmed: 29428839 doi: 10.1016/j.cbpa.2018.01.007
Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2017).
pubmed: 28498720 doi: 10.1146/annurev-biochem-061516-045115
Bleiholder, C., Dupuis, N. F., Wyttenbach, T. & Bowers, M. T. Ion mobilityg-mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat. Chem. 3, 172–177 (2011).
pubmed: 21258392 doi: 10.1038/nchem.945
Song, W., Wei, G., Mousseau, N. & Derreumaux, P. Self-assembly of the β2-microglobulin NHVTLSQ peptide using a coarse-grained protein model reveals a β-barrel species. J. Phys. Chem. B 101, 1238–1247 (2008).
Cawood, E. E., Karamanos, T. K., Wilson, A. J. & Radford, S. E. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys. Chem. 268, 106505 (2021).
pubmed: 33220582 pmcid: 8188297 doi: 10.1016/j.bpc.2020.106505
Hoffmann, W. et al. NFGAIL amyloid oligomers: the onset of beta-sheet formation and the mechanism for fibril formation. J. Am. Chem. Soc. 140, 244–249 (2018).
pubmed: 29235867 doi: 10.1021/jacs.7b09510
Lieblein, T. et al. Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer’s disease related oligomers. eLife 9, e59306 (2020).
pubmed: 33095161 pmcid: 7682991 doi: 10.7554/eLife.59306
Smirnovas, V. et al. Structural organization of brain-derived mammalian prions examined by hydrogen–deuterium exchange. Nat. Struct. Mol. Biol. 18, 504–506 (2011).
pubmed: 21441913 pmcid: 3379881 doi: 10.1038/nsmb.2035
Carulla, N. et al. Molecular recycling within amyloid fibrils. Nature 436, 554–558 (2005).
pubmed: 16049488 doi: 10.1038/nature03986
Sánchez, L. et al. Aβ40 and Aβ42 amyloid fibrils exhibit distinct molecular recycling properties. J. Am. Chem. Soc. 133, 6505–6508 (2011).
pubmed: 21486030 doi: 10.1021/ja1117123
Österlund, N. et al. Mass spectrometry and machine learning reveal determinants of client recognition by antiamyloid chaperones. Mol. Cell. Proteom. 10, 100413 (2022).
doi: 10.1016/j.mcpro.2022.100413
Österlund, N., Lundqvist, M., Ilag, L. L., Gräslund, A. & Emanuelsson, C. Amyloid-β oligomers are captured by the DNAJB6 chaperone: direct detection of interactions that can prevent primary nucleation. J. Biol. Chem. 295, 8135–8144 (2020).
pubmed: 32350108 pmcid: 7294096 doi: 10.1074/jbc.RA120.013459
Meinen, B. A., Gadkari, V. V., Stull, F., Ruotolo, B. T. & Bardwell, J. C. A. SERF engages in a fuzzy complex that accelerates primary nucleation of amyloid proteins. Proc. Natl Acad. Sci. Usa. 116, 23040–23049 (2019).
pubmed: 31659041 pmcid: 6859325 doi: 10.1073/pnas.1913316116
Young, L. M. et al. Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry–mass spectrometry. Nat. Chem. 7, 73–81 (2015).
pubmed: 25515893 doi: 10.1038/nchem.2129
Doussineau, T. et al. Mass determination of entire amyloid fibrils by using mass spectrometry. Angew. Chem. Int. Ed. 55, 2340–2344 (2016).
doi: 10.1002/anie.201508995
Alberti, S. et al. A user’s guide for phase separation assays with purified proteins. J. Mol. Biol. 430, 4806–4820 (2018).
pubmed: 29944854 pmcid: 6215329 doi: 10.1016/j.jmb.2018.06.038
Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. Usa. 108, 4334–4339 (2011).
pubmed: 21368180 pmcid: 3060270 doi: 10.1073/pnas.1017150108
Sakashita, G., Kiyoi, H., Naoe, T. & Urano, T. Analysis of the oligomeric states of nucleophosmin using size exclusion chromatography. Sci. Rep. 8, 4008 (2018).
pubmed: 29507312 pmcid: 5838202 doi: 10.1038/s41598-018-22359-w
Saluri, M. et al. A ‘grappling hook’ interaction connects self-assembly and chaperone activity of Nucleophosmin 1. PNAS Nexus 2, pgac303 (2023).
pubmed: 36743470 pmcid: 9896144 doi: 10.1093/pnasnexus/pgac303
Robb, C. G., Dao, T. P., Ujma, J., Castañeda, C. A. & Beveridge, R. Ion mobility mass spectrometry unveils global protein conformations in response to conditions that promote and reverse liquid–liquid phase separation. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.3c00756 (2023).
doi: 10.1021/jacs.3c00756 pubmed: 37276246 pmcid: 10273310
Ray, S. et al. α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 12, 705–716 (2020).
pubmed: 32514159 doi: 10.1038/s41557-020-0465-9
Ubbiali, D. et al. Direct observation of “elongated” conformational states in α-synuclein upon liquid–liquid phase separation. Angew. Chem. Int. Ed. 61, e202205726 (2022).
doi: 10.1002/anie.202205726
Boczek, E. E. et al. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA binding domain. eLife 10, e69377 (2021).
pubmed: 34487489 pmcid: 8510580 doi: 10.7554/eLife.69377
Emmanouilidis, L. et al. NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation. Nat. Chem. Biol. 17, 608–614 (2021).
pubmed: 33686294 doi: 10.1038/s41589-021-00752-3
Sahin, C. et al. Mass spectrometry of RNA-binding proteins during liquid–liquid phase separation reveals distinct assembly mechanisms and droplet architectures. J. Am. Chem. Soc. 145, 10659–10668 (2023).
pubmed: 37145883 pmcid: 10197120 doi: 10.1021/jacs.3c00932
Harrison, A. F. & Shorter, J. RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474, 1417–1438 (2017).
pubmed: 28389532 doi: 10.1042/BCJ20160499
Portz, B., Lee, B. L. & Shorter, J. FUS and TDP-43 phases in health and disease. Trends Biochem. Sci. 46, 550–563 (2021).
pubmed: 33446423 pmcid: 8195841 doi: 10.1016/j.tibs.2020.12.005
Sahin, C. et al. Ion mobility-mass spectrometry shows stepwise protein unfolding under alkaline conditions. Chem. Commun. 57, 1450–1453 (2021).
doi: 10.1039/D0CC08135C
Tsoi, P. S. et al. The N-terminal domain of ALS-linked TDP-43 assembles without misfolding. Angew. Chem. Int. Ed. 56, 12590–12593 (2017).
doi: 10.1002/anie.201706769
Hallegger, M. et al. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184, 4680–4696 (2021).
pubmed: 34380047 pmcid: 8445024 doi: 10.1016/j.cell.2021.07.018
Landreh, M. et al. Predicting the shapes of protein complexes through collision cross section measurements and database searches. Anal. Chem. 92, 12297–12303 (2020).
pubmed: 32660238 doi: 10.1021/acs.analchem.0c01940
Leppert, A. et al. Liquid–liquid phase separation primes spider silk proteins for fiber formation via a conditional sticker domain. Nano Lett. https://doi.org/10.1021/acs.nanolett.3c00773 (2023).
doi: 10.1021/acs.nanolett.3c00773 pubmed: 37656044 pmcid: 10510582
Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021).
pubmed: 33597515 pmcid: 7889641 doi: 10.1038/s41467-021-21181-9
Konermann, L. Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1827–1835 (2017).
pubmed: 28710594 doi: 10.1007/s13361-017-1739-3
Beveridge, R. et al. Relating gas phase to solution conformations: lessons from disordered proteins. Proteomics 15, 2872–2883 (2015).
pubmed: 25920945 pmcid: 4744708 doi: 10.1002/pmic.201400605
Abramsson, M. L. et al. Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry. JACS Au. 1, 2385–2393 (2021).
pubmed: 34977906 pmcid: 8717373 doi: 10.1021/jacsau.1c00458
Beveridge, R. et al. Ion mobility mass spectrometry uncovers the impact of the patterning of oppositely charged residues on the conformational distributions of intrinsically disordered proteins. J. Am. Chem. Soc. 141, 4908–4918 (2019).
pubmed: 30823702 pmcid: 6488185 doi: 10.1021/jacs.8b13483
Johnson, D. T., Di Stefano, L. H. & Jones, L. M. Fast photochemical oxidation of proteins (FPOP): a powerful mass spectrometry-based structural proteomics tool. J. Biol. Chem. 294, 11969–11979 (2019).
pubmed: 31262727 pmcid: 6690683 doi: 10.1074/jbc.REV119.006218
Parson, M., Jenkins, M. & Burke, J. Investigating how intrinsically disordered regions contribute to protein function using HDX–MS. Biochem. Soc. Trans. 50, 1607–1617 (2022).
pubmed: 36454645 doi: 10.1042/BST20220206
Mitra, G. Emerging role of mass spectrometry-based structural proteomics in elucidating intrinsic disorder in proteins. Proteomics 21, 2000011 (2021).
doi: 10.1002/pmic.202000011
Paloni, M., Bailly, R., Ciandrini, L. & Barducci, A. Unraveling molecular interactions in liquid-liquid phase separation of disordered proteins by atomistic simulations. J. Phys. Chem. B 124, 9009–9016 (2020).
pubmed: 32936641 doi: 10.1021/acs.jpcb.0c06288
Nasir, I., Onuchic, P. L., Labra, S. R. & Deniz, A. A. Single-molecule fluorescence studies of intrinsically disordered proteins and liquid phase separation. Biochim. Biophys. Acta - Proteins Proteom. 1867, 980–987 (2019).
pubmed: 31054969 pmcid: 6661187 doi: 10.1016/j.bbapap.2019.04.007
Ray, S., Singh, N., Patel, K., Krishnamoorthy, G. & Maji, S. K. FRAP and FRET investigation of α-synuclein fibrillization via liquid–liquid phase separation in vitro and in hela cells. Methods Mol. Biol. 2551, 395–423 (2023).
pubmed: 36310217 doi: 10.1007/978-1-0716-2597-2_26
Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).
pubmed: 22398450 pmcid: 3343696 doi: 10.1038/nature10879
Martin, E. W. et al. A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nat. Commun. 12, 4513 (2021).
pubmed: 34301955 pmcid: 8302766 doi: 10.1038/s41467-021-24727-z
Guenther, E. L. et al. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat. Struct. Mol. Biol. 25, 463–471 (2018).
pubmed: 29786080 pmcid: 5990464 doi: 10.1038/s41594-018-0064-2
Stender, E. G. P. et al. Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid–liquid phase separation. Nat. Commun. 12, 7289 (2021).
pubmed: 34911929 pmcid: 8674230 doi: 10.1038/s41467-021-27433-y
Arter, W. E. et al. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat. Commun. 13, 7845 (2022).
pubmed: 36543777 pmcid: 9768726 doi: 10.1038/s41467-022-35265-7

Auteurs

Cagla Sahin (C)

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden. Cagla.Sahin@ki.se.
Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark. Cagla.Sahin@ki.se.

Axel Leppert (A)

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden.

Michael Landreh (M)

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden. Michael.Landreh@icm.uu.se.
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden. Michael.Landreh@icm.uu.se.

Articles similaires

Detailing organelle division and segregation in Plasmodium falciparum.

Julie M J Verhoef, Cas Boshoven, Felix Evers et al.
1.00
Plasmodium falciparum Mitochondria Apicoplasts Humans Animals
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Humans Proteomics Paraffin Embedding Tissue Fixation Organelles
Intrinsically Disordered Proteins Protein Conformation Nuclear Magnetic Resonance, Biomolecular Amino Acids Computational Biology

Classifications MeSH