In-organoid single-cell CRISPR screening reveals determinants of hepatocyte differentiation and maturation.
Hepatocyte differentiation and maturation
Organoid
Regulon
Single-cell CRISPR screen
Journal
Genome biology
ISSN: 1474-760X
Titre abrégé: Genome Biol
Pays: England
ID NLM: 100960660
Informations de publication
Date de publication:
31 10 2023
31 10 2023
Historique:
received:
19
05
2023
accepted:
06
10
2023
medline:
2
11
2023
pubmed:
1
11
2023
entrez:
1
11
2023
Statut:
epublish
Résumé
Harnessing hepatocytes for basic research and regenerative medicine demands a complete understanding of the genetic determinants underlying hepatocyte differentiation and maturation. Single-cell CRISPR screens in organoids could link genetic perturbations with parallel transcriptomic readout in single cells, providing a powerful method to delineate roles of cell fate regulators. However, a big challenge for identifying key regulators during data analysis is the low expression levels of transcription factors (TFs), which are difficult to accurately estimate due to noise and dropouts in single-cell sequencing. Also, it is often the changes in TF activities in the transcriptional cascade rather than the expression levels of TFs that are relevant to the cell fate transition. Here, we develop Organoid-based Single-cell CRISPR screening Analyzed with Regulons (OSCAR), a framework using regulon activities as readouts to dissect gene knockout effects in organoids. In adult-stem-cell-derived liver organoids, we map transcriptomes in 80,576 cells upon 246 perturbations associated with transcriptional regulation of hepatocyte formation. Using OSCAR, we identify known and novel positive and negative regulators, among which Fos and Ubr5 are the top-ranked ones. Further single-gene loss-of-function assays demonstrate that Fos depletion in mouse and human liver organoids promote hepatocyte differentiation by specific upregulation of liver metabolic genes and pathways, and conditional knockout of Ubr5 in mouse liver delays hepatocyte maturation. Altogether, we provide a framework to explore lineage specifiers in a rapid and systematic manner, and identify hepatocyte determinators with potential clinical applications.
Sections du résumé
BACKGROUND
Harnessing hepatocytes for basic research and regenerative medicine demands a complete understanding of the genetic determinants underlying hepatocyte differentiation and maturation. Single-cell CRISPR screens in organoids could link genetic perturbations with parallel transcriptomic readout in single cells, providing a powerful method to delineate roles of cell fate regulators. However, a big challenge for identifying key regulators during data analysis is the low expression levels of transcription factors (TFs), which are difficult to accurately estimate due to noise and dropouts in single-cell sequencing. Also, it is often the changes in TF activities in the transcriptional cascade rather than the expression levels of TFs that are relevant to the cell fate transition.
RESULTS
Here, we develop Organoid-based Single-cell CRISPR screening Analyzed with Regulons (OSCAR), a framework using regulon activities as readouts to dissect gene knockout effects in organoids. In adult-stem-cell-derived liver organoids, we map transcriptomes in 80,576 cells upon 246 perturbations associated with transcriptional regulation of hepatocyte formation. Using OSCAR, we identify known and novel positive and negative regulators, among which Fos and Ubr5 are the top-ranked ones. Further single-gene loss-of-function assays demonstrate that Fos depletion in mouse and human liver organoids promote hepatocyte differentiation by specific upregulation of liver metabolic genes and pathways, and conditional knockout of Ubr5 in mouse liver delays hepatocyte maturation.
CONCLUSIONS
Altogether, we provide a framework to explore lineage specifiers in a rapid and systematic manner, and identify hepatocyte determinators with potential clinical applications.
Identifiants
pubmed: 37907970
doi: 10.1186/s13059-023-03084-8
pii: 10.1186/s13059-023-03084-8
pmc: PMC10617096
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
251Informations de copyright
© 2023. The Author(s).
Références
Nature. 2013 Feb 14;494(7436):247-50
pubmed: 23354049
Cell Stem Cell. 2019 Jul 3;25(1):23-38.e8
pubmed: 31080134
Cell. 2022 Aug 4;185(16):3008-3024.e16
pubmed: 35870449
Mol Cell. 2017 Apr 20;66(2):285-299.e5
pubmed: 28416141
Nat Methods. 2017 Nov;14(11):1083-1086
pubmed: 28991892
EMBO J. 2008 Apr 9;27(7):1017-28
pubmed: 18354499
Science. 1994 Oct 21;266(5184):443-8
pubmed: 7939685
Nat Rev Gastroenterol Hepatol. 2021 May;18(5):335-347
pubmed: 33568795
N Engl J Med. 2019 May 16;380(20):1982
pubmed: 31091397
Genome Biol. 2020 Jan 24;21(1):19
pubmed: 31980032
Hepatology. 2016 Aug;64(2):582-98
pubmed: 26999257
Cell Stem Cell. 2020 Mar 5;26(3):431-440.e8
pubmed: 32142663
Cell Stem Cell. 2018 Jul 05;23(1):114-122.e3
pubmed: 29937200
J Exp Med. 2017 May 1;214(5):1387-1409
pubmed: 28356389
Cell. 2015 Jan 15;160(1-2):299-312
pubmed: 25533785
Cell. 2014 Jun 5;157(6):1324-1338
pubmed: 24906150
Nat Protoc. 2013 Feb;8(2):430-7
pubmed: 23424751
Nat Methods. 2017 Mar;14(3):297-301
pubmed: 28099430
Cell Stem Cell. 2020 May 7;26(5):782-792.e7
pubmed: 32348727
Nat Commun. 2018 May 23;9(1):2040
pubmed: 29795194
Nat Cell Biol. 2022 Oct;24(10):1487-1498
pubmed: 36109670
Int J Dev Biol. 2006;50(7):653-7
pubmed: 16892179
Cell Stem Cell. 2019 Jul 3;25(1):39-53.e10
pubmed: 31080135
Hepatology. 2010 Jan;51(1):297-305
pubmed: 19998274
Nat Protoc. 2016 Sep;11(9):1724-43
pubmed: 27560176
Cell. 2016 Dec 15;167(7):1853-1866.e17
pubmed: 27984732
Nat Commun. 2015 Nov 04;6:8768
pubmed: 26531099
Cell. 2016 Dec 15;167(7):1883-1896.e15
pubmed: 27984734
Nature. 2023 Sep;621(7978):365-372
pubmed: 36198796
Nat Methods. 2018 Apr;15(4):271-274
pubmed: 29457792
Cancer Cell. 2018 Nov 12;34(5):707-723.e7
pubmed: 30423293
Nature. 2017 Jul 20;547(7663):350-354
pubmed: 28700576
Mol Cell Biol. 2004 Aug;24(16):7225-34
pubmed: 15282321
Science. 2004 Feb 27;303(5662):1378-81
pubmed: 14988562
Stem Cell Reports. 2018 Jul 10;11(1):22-31
pubmed: 29861165
Cell Stem Cell. 2021 May 6;28(5):816-832
pubmed: 33961769
N Engl J Med. 2019 Feb 7;380(6):569-579
pubmed: 30726695
Nat Genet. 2003 Jul;34(3):292-6
pubmed: 12808453
J Cell Sci. 2000 Feb;113 ( Pt 3):439-50
pubmed: 10639331
Hepatology. 2017 Nov;66(5):1387-1401
pubmed: 28681484
Hepatology. 2014 Oct;60(4):1367-77
pubmed: 24700364
Blood. 2020 Jul 16;136(3):299-312
pubmed: 32325489
Cell. 2016 Dec 15;167(7):1867-1882.e21
pubmed: 27984733
Development. 2021 Sep 1;148(17):
pubmed: 34478514
Nat Biotechnol. 2014 Apr;32(4):381-386
pubmed: 24658644
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15635-15644
pubmed: 31300537
Cell. 2014 Oct 9;159(2):440-55
pubmed: 25263330
Nat Protoc. 2020 Jul;15(7):2247-2276
pubmed: 32561888
Genes Dev. 2020 Jan 1;34(1-2):72-86
pubmed: 31831627
Science. 2020 Nov 27;370(6520):
pubmed: 33243861
Hepatology. 2016 Aug;64(2):663-8
pubmed: 27227904
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4):
pubmed: 33479180
J Biol Chem. 2019 Sep 20;294(38):14096-14104
pubmed: 31366731
Genome Biol. 2020 Jun 8;21(1):136
pubmed: 32513233
J Hepatol. 2015 Mar;62(3):720-33
pubmed: 25450203
Development. 2002 Apr;129(8):1819-28
pubmed: 11934848
iScience. 2022 Oct 14;25(11):105359
pubmed: 36325073
Science. 2020 Nov 20;370(6519):935-941
pubmed: 33122427
Cell Res. 2020 Dec;30(12):1109-1126
pubmed: 32690901
Genome Biol. 2020 Feb 12;21(1):36
pubmed: 32051003