Widespread sympatry in a species-rich clade of marine fishes (Carangoidei).
age-range correlation
carangiformes
marine fish speciation
phylogenomics
ultraconserved elements
Journal
Proceedings. Biological sciences
ISSN: 1471-2954
Titre abrégé: Proc Biol Sci
Pays: England
ID NLM: 101245157
Informations de publication
Date de publication:
08 Nov 2023
08 Nov 2023
Historique:
medline:
2
11
2023
pubmed:
1
11
2023
entrez:
1
11
2023
Statut:
ppublish
Résumé
A universal paradigm describing patterns of speciation across the tree of life has been debated for decades. In marine organisms, inferring patterns of speciation using contemporary and historical patterns of biogeography is challenging due to the deficiency of species-level phylogenies and information on species' distributions, as well as conflicting relationships between species' dispersal, range size and co-occurrence. Most research on global patterns of marine fish speciation and biogeography has focused on coral reef or pelagic species. Carangoidei is an ecologically important clade of marine fishes that use coral reef and pelagic environments. We used sequence capture of 1314 ultraconserved elements (UCEs) from 154 taxa to generate a time-calibrated phylogeny of Carangoidei and its parent clade, Carangiformes. Age-range correlation analyses of the geographical distributions and divergence times of sister species pairs reveal widespread sympatry, with 73% of sister species pairs exhibiting sympatric geographical distributions, regardless of node age. Most species pairs coexist across large portions of their ranges. We also observe greater disparity in body length and maximum depth between sympatric relative to allopatric sister species. These and other ecological or behavioural attributes probably facilitate sympatry among the most closely related carangoids.
Identifiants
pubmed: 37909084
doi: 10.1098/rspb.2023.0657
pmc: PMC10618865
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
20230657Références
Virus Evol. 2018 Jun 08;4(1):vey016
pubmed: 29942656
Proc Biol Sci. 2012 Mar 7;279(1730):1033-40
pubmed: 21920979
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
J Hered. 1992 May-Jun;83(3):189-95
pubmed: 1624764
Mol Phylogenet Evol. 2012 Feb;62(2):653-63
pubmed: 22122942
PLoS Curr. 2013 Apr 18;5:
pubmed: 23653398
Nat Ecol Evol. 2018 Apr;2(4):688-696
pubmed: 29531346
Mol Biol Evol. 2017 Mar 1;34(3):772-773
pubmed: 28013191
Proc Biol Sci. 2005 Mar 22;272(1563):585-91
pubmed: 16007745
Evolution. 2010 Feb 1;64(2):336-47
pubmed: 19744123
Ecol Lett. 2007 Aug;10(8):745-58
pubmed: 17594430
Evolution. 2003 Apr;57(4):717-45
pubmed: 12778543
Proc Biol Sci. 2023 Nov 8;290(2010):20230657
pubmed: 37909084
Proc Biol Sci. 2011 Feb 22;278(1705):613-8
pubmed: 20810434
PeerJ. 2019 Oct 11;7:e7755
pubmed: 31616586
Science. 1905 Nov 3;22(566):545-62
pubmed: 17832412
Mol Biol Evol. 2018 Jul 1;35(7):1798-1811
pubmed: 29659989
Bioinformatics. 2015 Jun 15;31(12):i44-52
pubmed: 26072508
Front Genet. 2014 Nov 13;5:394
pubmed: 25431581
Nat Ecol Evol. 2022 Aug;6(8):1211-1220
pubmed: 35835827
J Exp Mar Biol Ecol. 2001 Jun 15;261(1):31-54
pubmed: 11438104
BMC Evol Biol. 2016 Oct 21;16(1):224
pubmed: 27769164
Proc Biol Sci. 2016 Nov 16;283(1842):
pubmed: 27807262
Ecol Lett. 2013 Mar;16(3):330-8
pubmed: 23231353
Syst Biol. 2007 Feb;56(1):17-24
pubmed: 17366134
Proc Biol Sci. 2014 Jan 22;281(1778):20132980
pubmed: 24452025
Syst Biol. 2013 Nov;62(6):789-804
pubmed: 23736102
Am Nat. 2000 Apr;155(4):419-434
pubmed: 10753072
R Soc Open Sci. 2015 Feb 04;2(2):140375
pubmed: 26064600
Curr Biol. 2017 Apr 3;27(7):1019-1025
pubmed: 28376325
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6249-6254
pubmed: 29760103
Evolution. 2010 Jul;64(7):2173-8
pubmed: 20163450
Proc Biol Sci. 2005 Mar 22;272(1563):573-9
pubmed: 15817431
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12738-43
pubmed: 23858462
Evolution. 2006 Mar;60(3):601-15
pubmed: 16637504
Am Nat. 2010 Dec;176 Suppl 1:S26-44
pubmed: 21043778
Am Nat. 2008 May;171(5):646-57
pubmed: 18419572
Mol Phylogenet Evol. 2018 Apr;121:35-45
pubmed: 29289544
Trends Ecol Evol. 2001 Jul 1;16(7):330-343
pubmed: 11403865
Mol Phylogenet Evol. 2011 Mar;58(3):546-52
pubmed: 21256237
Trends Ecol Evol. 2013 Jun;28(6):359-66
pubmed: 23453048
Am Nat. 1992 Jul;140(1):85-108
pubmed: 19426066
Mol Phylogenet Evol. 2002 Jun;23(3):513-24
pubmed: 12099802
Syst Biol. 2013 Sep;62(5):763-85
pubmed: 23749787
Mol Phylogenet Evol. 2016 May;98:84-8
pubmed: 26876637
Evolution. 1989 Mar;43(2):362-381
pubmed: 28568554
Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):2997-3007
pubmed: 18522915
Syst Biol. 2012 May;61(3):539-42
pubmed: 22357727
Conserv Biol. 2010 Aug;24(4):1042-51
pubmed: 20184650
Proc Biol Sci. 2015 Jan 22;282(1799):20141929
pubmed: 25621326
Proc Biol Sci. 2019 Feb 13;286(1896):20182852
pubmed: 30963939
BMC Evol Biol. 2011 Jul 21;11:217
pubmed: 21777445
Mol Phylogenet Evol. 2008 Sep;48(3):918-28
pubmed: 18599320
Cancer Res. 1967 Feb;27(2):209-20
pubmed: 6018555
Evolution. 1994 Apr;48(2):490-497
pubmed: 28568302
J Fish Biol. 2018 Jan;92(1):190-202
pubmed: 29193148
Ecol Lett. 2019 Jan;22(1):190-199
pubmed: 30467938
Science. 2022 Dec 16;378(6625):1214-1218
pubmed: 36520892
Evolution. 2013 Feb;67(2):417-28
pubmed: 23356614
Bioinformatics. 2016 Mar 1;32(5):786-8
pubmed: 26530724
Mol Phylogenet Evol. 2015 Feb;83:33-9
pubmed: 25450104
Mol Biol Evol. 2013 May;30(5):1188-95
pubmed: 23418397
Am Nat. 2015 Nov;186(5):565-81
pubmed: 26655771