iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
18
03
2021
accepted:
04
10
2023
medline:
9
11
2023
pubmed:
2
11
2023
entrez:
2
11
2023
Statut:
ppublish
Résumé
Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain
Identifiants
pubmed: 37914940
doi: 10.1038/s41586-023-06713-1
pii: 10.1038/s41586-023-06713-1
doi:
Substances chimiques
Cholesterol
97C5T2UQ7J
PLIN2 protein, human
0
Esters
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
397-405Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).
pubmed: 20966214
pmcid: 3719181
doi: 10.1126/science.1194637
Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).
pubmed: 23467340
pmcid: 3711552
doi: 10.1523/JNEUROSCI.3441-12.2013
Marin-Teva, J. L., Cuadros, M. A., Martin-Oliva, D. & Navascues, J. Microglia and neuronal cell death. Neuron Glia Biol. 7, 25–40 (2011).
pubmed: 22377033
doi: 10.1017/S1740925X12000014
Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 7, 483–495 (2010).
pubmed: 20887954
pmcid: 4008496
doi: 10.1016/j.stem.2010.08.014
Shigemoto-Mogami, Y., Hoshikawa, K., Goldman, J. E., Sekino, Y. & Sato, K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci. 34, 2231–2243 (2014).
pubmed: 24501362
pmcid: 3913870
doi: 10.1523/JNEUROSCI.1619-13.2014
Squarzoni, P. et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8, 1271–1279 (2014).
pubmed: 25159150
doi: 10.1016/j.celrep.2014.07.042
Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).
pubmed: 25188634
pmcid: 4160653
doi: 10.1038/nprot.2014.158
Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).
pubmed: 23995685
doi: 10.1038/nature12517
Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).
pubmed: 26005811
pmcid: 4489980
doi: 10.1038/nmeth.3415
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).
pubmed: 27118425
pmcid: 4900885
doi: 10.1016/j.cell.2016.04.032
Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).
pubmed: 28445462
pmcid: 5659341
doi: 10.1038/nature22047
Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).
pubmed: 26644564
pmcid: 4697386
doi: 10.1073/pnas.1520760112
Kelava, I. & Lancaster, M. A. Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev. Biol. 420, 199–209 (2016).
pubmed: 27402594
pmcid: 5161139
doi: 10.1016/j.ydbio.2016.06.037
Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).
pubmed: 30992274
pmcid: 6503989
doi: 10.1242/dev.166074
Lee, C. Z. W., Kozaki, T. & Ginhoux, F. Studying tissue macrophages in vitro: are iPSC-derived cells the answer? Nat. Rev. Immunol. 18, 716–725 (2018).
pubmed: 30140052
doi: 10.1038/s41577-018-0054-y
Monier, A. et al. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J. Neuropathol. Exp. Neurol. 66, 372–382 (2007).
pubmed: 17483694
doi: 10.1097/nen.0b013e3180517b46
Bian, Z. et al. Deciphering human macrophage development at single-cell resolution. Nature 582, 571–576 (2020).
pubmed: 32499656
doi: 10.1038/s41586-020-2316-7
Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).
pubmed: 31619793
doi: 10.1038/s41586-019-1654-9
Popova, G. et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 28, 2153–66 e6 (2021).
pubmed: 34536354
doi: 10.1016/j.stem.2021.08.015
Xu, R. et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports 16, 1923–1937 (2021).
pubmed: 34297942
pmcid: 8365109
doi: 10.1016/j.stemcr.2021.06.011
Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186, 2111–2126 e20 (2023).
pubmed: 37172564
doi: 10.1016/j.cell.2023.04.022
Takata, K. et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 47, 183–198 e6 (2017).
pubmed: 28723550
doi: 10.1016/j.immuni.2017.06.017
Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759–773 e8 (2017).
pubmed: 28521131
pmcid: 5523817
doi: 10.1016/j.neuron.2017.04.043
Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017).
pubmed: 28546318
pmcid: 5858585
doi: 10.1126/science.aal3222
Su, N. et al. Occurrence of transmembrane protein 119 in the retina is not restricted to the microglia: an immunohistochemical study. Transl. Vis. Sci. Technol. 8, 29 (2019).
pubmed: 31853425
pmcid: 6908137
doi: 10.1167/tvst.8.6.29
Vankriekelsvenne, E. et al. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Glia 70, 1170–1190 (2022).
pubmed: 35246882
doi: 10.1002/glia.24164
Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–1746 (2016).
pubmed: 26884166
pmcid: 4812770
doi: 10.1073/pnas.1525528113
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).
pubmed: 15831717
doi: 10.1126/science.1110647
Lee, C. Y. & Landreth, G. E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. (Vienna) 117, 949–960 (2010).
pubmed: 20552234
doi: 10.1007/s00702-010-0433-4
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179
pmcid: 6700744
doi: 10.1038/nbt.4096
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892
pmcid: 5937676
doi: 10.1038/nmeth.4463
Fagerlund, I. et al. Microglia-like cells promote neuronal functions in cerebral organoids. Cells. 11, 124 (2021).
pubmed: 35011686
pmcid: 8750120
doi: 10.3390/cells11010124
Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293 e9 (2017).
pubmed: 28426964
pmcid: 5482419
doi: 10.1016/j.neuron.2017.03.042
Ormel, P. R. et al. Microglia innately develop within cerebral organoids. Nat. Commun. 9, 4167 (2018).
pubmed: 30301888
pmcid: 6177485
doi: 10.1038/s41467-018-06684-2
Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).
pubmed: 23334579
doi: 10.1038/nn.3318
Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001).
pubmed: 11784010
doi: 10.1006/dbio.2001.0393
Yuan, S. H. et al. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS ONE 6, e17540 (2011).
pubmed: 21407814
pmcid: 3047583
doi: 10.1371/journal.pone.0017540
Portier, M. M., Escurat, M., Landon, F., Djabali, K. & Bousquet, O. Peripherin and neurofilaments: expression and role during neural development. C. R. Acad. Sci. III 316, 1124–1140 (1993).
pubmed: 8076208
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
pubmed: 22996553
pmcid: 4243026
doi: 10.1038/nature11405
Favuzzi, E. et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 184, 5686 (2021).
pubmed: 34715023
pmcid: 9122269
doi: 10.1016/j.cell.2021.10.009
Townshend, R. F. et al. Effect of cell spreading on rosette formation by human pluripotent stem cell-derived neural progenitor cells. Front. Cell. Dev. Biol. 8, 588941 (2020).
pubmed: 33178701
pmcid: 7593581
doi: 10.3389/fcell.2020.588941
Bengoechea-Alonso, M. T. & Ericsson, J. SREBP in signal transduction: cholesterol metabolism and beyond. Curr. Opin. Cell Biol. 19, 215–222 (2007).
pubmed: 17303406
doi: 10.1016/j.ceb.2007.02.004
Kontush, A., Lhomme, M. & Chapman, M. J. Unraveling the complexities of the HDL lipidome. J. Lipid Res. 54, 2950–2963 (2013).
pubmed: 23543772
pmcid: 3793600
doi: 10.1194/jlr.R036095
Chroni, A., Liu, T., Fitzgerald, M. L., Freeman, M. W. & Zannis, V. I. Cross-linking and lipid efflux properties of apoA-I mutants suggest direct association between apoA-I helices and ABCA1. Biochemistry 43, 2126–2139 (2004).
pubmed: 14967052
doi: 10.1021/bi035813p
Chung, S. et al. Targeted deletion of hepatocyte ABCA1 leads to very low density lipoprotein triglyceride overproduction and low density lipoprotein hypercatabolism. J. Biol. Chem. 285, 12197–12209 (2010).
pubmed: 20178985
pmcid: 2852959
doi: 10.1074/jbc.M109.096933
Kypreos, K. E. ABCA1 promotes the de novo biogenesis of apolipoprotein CIII-containing HDL particles in vivo and modulates the severity of apolipoprotein CIII-induced hypertriglyceridemia. Biochemistry 47, 10491–10502 (2008).
pubmed: 18767813
doi: 10.1021/bi801249c
Smith, J. D. et al. ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J. Lipid Res. 45, 635–644 (2004).
pubmed: 14703508
doi: 10.1194/jlr.M300336-JLR200
Favari, E. et al. Probucol inhibits ABCA1-mediated cellular lipid efflux. Arterioscler. Thromb. Vasc. Biol. 24, 2345–2350 (2004).
pubmed: 15514211
doi: 10.1161/01.ATV.0000148706.15947.8a
Jin, X. et al. ABCA1 contributes to macrophage deposition of extracellular cholesterol. J. Lipid Res. 56, 1720–1726 (2015).
pubmed: 26203076
pmcid: 4548776
doi: 10.1194/jlr.M060053
Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516 e16 (2018).
pubmed: 29275859
pmcid: 5786503
doi: 10.1016/j.cell.2017.11.042
Loo, L. et al. Single-cell transcriptomic analysis of mouse neocortical development. Nat. Commun. 10, 134 (2019).
pubmed: 30635555
pmcid: 6329831
doi: 10.1038/s41467-018-08079-9
Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).
pubmed: 31591580
pmcid: 6918722
doi: 10.1038/s41592-019-0586-5
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).
pubmed: 30617256
pmcid: 6836675
doi: 10.1038/s41588-018-0311-9
Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).
pubmed: 30820047
pmcid: 6463297
doi: 10.1038/s41588-019-0358-2
Ferris, H. A. et al. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc. Natl Acad. Sci. USA 114, 1189–1194. (2017).
pubmed: 28096339
pmcid: 5293102
doi: 10.1073/pnas.1620506114
Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).
pubmed: 11701931
doi: 10.1126/science.294.5545.1354
Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535 e14 (2019).
pubmed: 31130380
doi: 10.1016/j.cell.2019.04.001
Ito, J., Nagayasu, Y., Miura, Y., Yokoyama, S. & Michikawa, M. Astrocytes endogenous apoE generates HDL-like lipoproteins using previously synthesized cholesterol through interaction with ABCA1. Brain Res. 1570, 1–12 (2014).
pubmed: 24814386
doi: 10.1016/j.brainres.2014.04.037
Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020).
pubmed: 32632287
pmcid: 7483351
doi: 10.1038/s41593-020-0654-2
Scott-Hewitt, N. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020).
pubmed: 32657463
pmcid: 7429741
doi: 10.15252/embj.2020105380
Knobloch, M. The role of lipid metabolism for neural stem cell regulation. Brain Plast. 3, 61–71 (2017).
pubmed: 29765860
pmcid: 5928532
doi: 10.3233/BPL-160035
Driver, A. M., Kratz, L. E., Kelley, R. I. & Stottmann, R. W. Altered cholesterol biosynthesis causes precocious neurogenesis in the developing mouse forebrain. Neurobiol. Dis. 91, 69–82 (2016).
pubmed: 26921468
pmcid: 4860088
doi: 10.1016/j.nbd.2016.02.017
Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013).
pubmed: 23201681
doi: 10.1038/nature11689
Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 7, 1836–1846 (2012).
pubmed: 22976355
doi: 10.1038/nprot.2012.116
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).
pubmed: 24385147
doi: 10.1038/nprot.2014.006
Lopez-Hernandez, G. Y. et al. Electrophysiological properties of basal forebrain cholinergic neurons identified by genetic and optogenetic tagging. J. Neurochem. 142, 103–110 (2017).
pubmed: 28791701
pmcid: 7286072
doi: 10.1111/jnc.14073
Trombin, F., Gnatkovsky, V. & de Curtis, M. Changes in action potential features during focal seizure discharges in the entorhinal cortex of the in vitro isolated guinea pig brain. J. Neurophysiol. 106, 1411–1423 (2011).
pubmed: 21676935
doi: 10.1152/jn.00207.2011
Ho, V. et al. Expression analysis of rare cellular subsets: direct RT-PCR on limited cell numbers obtained by FACS or soft agar assays. Biotechniques 54, 208–212 (2013).
pubmed: 23581467
doi: 10.2144/000114019
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e21 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Becht E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
Mi, H. et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021).
pubmed: 33290554
doi: 10.1093/nar/gkaa1106
Bindea, G., Galon, J. & Mlecnik, B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29, 661–663 (2013).
pubmed: 23325622
pmcid: 3582273
doi: 10.1093/bioinformatics/btt019
Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).
pubmed: 19237447
pmcid: 2666812
doi: 10.1093/bioinformatics/btp101
Sieber-Ruckstuhl, N. S. et al. Changes in the canine plasma lipidome after short- and long-term excess glucocorticoid exposure. Sci. Rep. 9, 6015 (2019).
pubmed: 30979907
pmcid: 6461633
doi: 10.1038/s41598-019-42190-1
Henriet, E. et al. Argininosuccinate synthase 1 (ASS1): a marker of unclassified hepatocellular adenoma and high bleeding risk. Hepatology 66, 2016–2028 (2017).
pubmed: 28646562
doi: 10.1002/hep.29336
Bouyssie, D. et al. Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics 36, 3148–3155 (2020).
pubmed: 32096818
pmcid: 7214047
doi: 10.1093/bioinformatics/btaa118