iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 18 03 2021
accepted: 04 10 2023
medline: 9 11 2023
pubmed: 2 11 2023
entrez: 2 11 2023
Statut: ppublish

Résumé

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain

Identifiants

pubmed: 37914940
doi: 10.1038/s41586-023-06713-1
pii: 10.1038/s41586-023-06713-1
doi:

Substances chimiques

Cholesterol 97C5T2UQ7J
PLIN2 protein, human 0
Esters 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

397-405

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).
pubmed: 20966214 pmcid: 3719181 doi: 10.1126/science.1194637
Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).
pubmed: 23467340 pmcid: 3711552 doi: 10.1523/JNEUROSCI.3441-12.2013
Marin-Teva, J. L., Cuadros, M. A., Martin-Oliva, D. & Navascues, J. Microglia and neuronal cell death. Neuron Glia Biol. 7, 25–40 (2011).
pubmed: 22377033 doi: 10.1017/S1740925X12000014
Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 7, 483–495 (2010).
pubmed: 20887954 pmcid: 4008496 doi: 10.1016/j.stem.2010.08.014
Shigemoto-Mogami, Y., Hoshikawa, K., Goldman, J. E., Sekino, Y. & Sato, K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci. 34, 2231–2243 (2014).
pubmed: 24501362 pmcid: 3913870 doi: 10.1523/JNEUROSCI.1619-13.2014
Squarzoni, P. et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8, 1271–1279 (2014).
pubmed: 25159150 doi: 10.1016/j.celrep.2014.07.042
Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).
pubmed: 25188634 pmcid: 4160653 doi: 10.1038/nprot.2014.158
Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).
pubmed: 23995685 doi: 10.1038/nature12517
Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).
pubmed: 26005811 pmcid: 4489980 doi: 10.1038/nmeth.3415
Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).
pubmed: 27118425 pmcid: 4900885 doi: 10.1016/j.cell.2016.04.032
Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).
pubmed: 28445462 pmcid: 5659341 doi: 10.1038/nature22047
Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).
pubmed: 26644564 pmcid: 4697386 doi: 10.1073/pnas.1520760112
Kelava, I. & Lancaster, M. A. Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev. Biol. 420, 199–209 (2016).
pubmed: 27402594 pmcid: 5161139 doi: 10.1016/j.ydbio.2016.06.037
Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).
pubmed: 30992274 pmcid: 6503989 doi: 10.1242/dev.166074
Lee, C. Z. W., Kozaki, T. & Ginhoux, F. Studying tissue macrophages in vitro: are iPSC-derived cells the answer? Nat. Rev. Immunol. 18, 716–725 (2018).
pubmed: 30140052 doi: 10.1038/s41577-018-0054-y
Monier, A. et al. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J. Neuropathol. Exp. Neurol. 66, 372–382 (2007).
pubmed: 17483694 doi: 10.1097/nen.0b013e3180517b46
Bian, Z. et al. Deciphering human macrophage development at single-cell resolution. Nature 582, 571–576 (2020).
pubmed: 32499656 doi: 10.1038/s41586-020-2316-7
Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019).
pubmed: 31619793 doi: 10.1038/s41586-019-1654-9
Popova, G. et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 28, 2153–66 e6 (2021).
pubmed: 34536354 doi: 10.1016/j.stem.2021.08.015
Xu, R. et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports 16, 1923–1937 (2021).
pubmed: 34297942 pmcid: 8365109 doi: 10.1016/j.stemcr.2021.06.011
Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186, 2111–2126 e20 (2023).
pubmed: 37172564 doi: 10.1016/j.cell.2023.04.022
Takata, K. et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 47, 183–198 e6 (2017).
pubmed: 28723550 doi: 10.1016/j.immuni.2017.06.017
Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759–773 e8 (2017).
pubmed: 28521131 pmcid: 5523817 doi: 10.1016/j.neuron.2017.04.043
Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017).
pubmed: 28546318 pmcid: 5858585 doi: 10.1126/science.aal3222
Su, N. et al. Occurrence of transmembrane protein 119 in the retina is not restricted to the microglia: an immunohistochemical study. Transl. Vis. Sci. Technol. 8, 29 (2019).
pubmed: 31853425 pmcid: 6908137 doi: 10.1167/tvst.8.6.29
Vankriekelsvenne, E. et al. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Glia 70, 1170–1190 (2022).
pubmed: 35246882 doi: 10.1002/glia.24164
Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–1746 (2016).
pubmed: 26884166 pmcid: 4812770 doi: 10.1073/pnas.1525528113
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).
pubmed: 15831717 doi: 10.1126/science.1110647
Lee, C. Y. & Landreth, G. E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. (Vienna) 117, 949–960 (2010).
pubmed: 20552234 doi: 10.1007/s00702-010-0433-4
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892 pmcid: 5937676 doi: 10.1038/nmeth.4463
Fagerlund, I. et al. Microglia-like cells promote neuronal functions in cerebral organoids. Cells. 11, 124 (2021).
pubmed: 35011686 pmcid: 8750120 doi: 10.3390/cells11010124
Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293 e9 (2017).
pubmed: 28426964 pmcid: 5482419 doi: 10.1016/j.neuron.2017.03.042
Ormel, P. R. et al. Microglia innately develop within cerebral organoids. Nat. Commun. 9, 4167 (2018).
pubmed: 30301888 pmcid: 6177485 doi: 10.1038/s41467-018-06684-2
Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).
pubmed: 23334579 doi: 10.1038/nn.3318
Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001).
pubmed: 11784010 doi: 10.1006/dbio.2001.0393
Yuan, S. H. et al. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS ONE 6, e17540 (2011).
pubmed: 21407814 pmcid: 3047583 doi: 10.1371/journal.pone.0017540
Portier, M. M., Escurat, M., Landon, F., Djabali, K. & Bousquet, O. Peripherin and neurofilaments: expression and role during neural development. C. R. Acad. Sci. III 316, 1124–1140 (1993).
pubmed: 8076208
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).
pubmed: 22996553 pmcid: 4243026 doi: 10.1038/nature11405
Favuzzi, E. et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell 184, 5686 (2021).
pubmed: 34715023 pmcid: 9122269 doi: 10.1016/j.cell.2021.10.009
Townshend, R. F. et al. Effect of cell spreading on rosette formation by human pluripotent stem cell-derived neural progenitor cells. Front. Cell. Dev. Biol. 8, 588941 (2020).
pubmed: 33178701 pmcid: 7593581 doi: 10.3389/fcell.2020.588941
Bengoechea-Alonso, M. T. & Ericsson, J. SREBP in signal transduction: cholesterol metabolism and beyond. Curr. Opin. Cell Biol. 19, 215–222 (2007).
pubmed: 17303406 doi: 10.1016/j.ceb.2007.02.004
Kontush, A., Lhomme, M. & Chapman, M. J. Unraveling the complexities of the HDL lipidome. J. Lipid Res. 54, 2950–2963 (2013).
pubmed: 23543772 pmcid: 3793600 doi: 10.1194/jlr.R036095
Chroni, A., Liu, T., Fitzgerald, M. L., Freeman, M. W. & Zannis, V. I. Cross-linking and lipid efflux properties of apoA-I mutants suggest direct association between apoA-I helices and ABCA1. Biochemistry 43, 2126–2139 (2004).
pubmed: 14967052 doi: 10.1021/bi035813p
Chung, S. et al. Targeted deletion of hepatocyte ABCA1 leads to very low density lipoprotein triglyceride overproduction and low density lipoprotein hypercatabolism. J. Biol. Chem. 285, 12197–12209 (2010).
pubmed: 20178985 pmcid: 2852959 doi: 10.1074/jbc.M109.096933
Kypreos, K. E. ABCA1 promotes the de novo biogenesis of apolipoprotein CIII-containing HDL particles in vivo and modulates the severity of apolipoprotein CIII-induced hypertriglyceridemia. Biochemistry 47, 10491–10502 (2008).
pubmed: 18767813 doi: 10.1021/bi801249c
Smith, J. D. et al. ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. J. Lipid Res. 45, 635–644 (2004).
pubmed: 14703508 doi: 10.1194/jlr.M300336-JLR200
Favari, E. et al. Probucol inhibits ABCA1-mediated cellular lipid efflux. Arterioscler. Thromb. Vasc. Biol. 24, 2345–2350 (2004).
pubmed: 15514211 doi: 10.1161/01.ATV.0000148706.15947.8a
Jin, X. et al. ABCA1 contributes to macrophage deposition of extracellular cholesterol. J. Lipid Res. 56, 1720–1726 (2015).
pubmed: 26203076 pmcid: 4548776 doi: 10.1194/jlr.M060053
Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516 e16 (2018).
pubmed: 29275859 pmcid: 5786503 doi: 10.1016/j.cell.2017.11.042
Loo, L. et al. Single-cell transcriptomic analysis of mouse neocortical development. Nat. Commun. 10, 134 (2019).
pubmed: 30635555 pmcid: 6329831 doi: 10.1038/s41467-018-08079-9
Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).
pubmed: 31591580 pmcid: 6918722 doi: 10.1038/s41592-019-0586-5
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).
pubmed: 30617256 pmcid: 6836675 doi: 10.1038/s41588-018-0311-9
Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).
pubmed: 30820047 pmcid: 6463297 doi: 10.1038/s41588-019-0358-2
Ferris, H. A. et al. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc. Natl Acad. Sci. USA 114, 1189–1194. (2017).
pubmed: 28096339 pmcid: 5293102 doi: 10.1073/pnas.1620506114
Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).
pubmed: 11701931 doi: 10.1126/science.294.5545.1354
Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535 e14 (2019).
pubmed: 31130380 doi: 10.1016/j.cell.2019.04.001
Ito, J., Nagayasu, Y., Miura, Y., Yokoyama, S. & Michikawa, M. Astrocytes endogenous apoE generates HDL-like lipoproteins using previously synthesized cholesterol through interaction with ABCA1. Brain Res. 1570, 1–12 (2014).
pubmed: 24814386 doi: 10.1016/j.brainres.2014.04.037
Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020).
pubmed: 32632287 pmcid: 7483351 doi: 10.1038/s41593-020-0654-2
Scott-Hewitt, N. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020).
pubmed: 32657463 pmcid: 7429741 doi: 10.15252/embj.2020105380
Knobloch, M. The role of lipid metabolism for neural stem cell regulation. Brain Plast. 3, 61–71 (2017).
pubmed: 29765860 pmcid: 5928532 doi: 10.3233/BPL-160035
Driver, A. M., Kratz, L. E., Kelley, R. I. & Stottmann, R. W. Altered cholesterol biosynthesis causes precocious neurogenesis in the developing mouse forebrain. Neurobiol. Dis. 91, 69–82 (2016).
pubmed: 26921468 pmcid: 4860088 doi: 10.1016/j.nbd.2016.02.017
Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013).
pubmed: 23201681 doi: 10.1038/nature11689
Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 7, 1836–1846 (2012).
pubmed: 22976355 doi: 10.1038/nprot.2012.116
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).
pubmed: 24385147 doi: 10.1038/nprot.2014.006
Lopez-Hernandez, G. Y. et al. Electrophysiological properties of basal forebrain cholinergic neurons identified by genetic and optogenetic tagging. J. Neurochem. 142, 103–110 (2017).
pubmed: 28791701 pmcid: 7286072 doi: 10.1111/jnc.14073
Trombin, F., Gnatkovsky, V. & de Curtis, M. Changes in action potential features during focal seizure discharges in the entorhinal cortex of the in vitro isolated guinea pig brain. J. Neurophysiol. 106, 1411–1423 (2011).
pubmed: 21676935 doi: 10.1152/jn.00207.2011
Ho, V. et al. Expression analysis of rare cellular subsets: direct RT-PCR on limited cell numbers obtained by FACS or soft agar assays. Biotechniques 54, 208–212 (2013).
pubmed: 23581467 doi: 10.2144/000114019
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Becht E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
Mi, H. et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021).
pubmed: 33290554 doi: 10.1093/nar/gkaa1106
Bindea, G., Galon, J. & Mlecnik, B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29, 661–663 (2013).
pubmed: 23325622 pmcid: 3582273 doi: 10.1093/bioinformatics/btt019
Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).
pubmed: 19237447 pmcid: 2666812 doi: 10.1093/bioinformatics/btp101
Sieber-Ruckstuhl, N. S. et al. Changes in the canine plasma lipidome after short- and long-term excess glucocorticoid exposure. Sci. Rep. 9, 6015 (2019).
pubmed: 30979907 pmcid: 6461633 doi: 10.1038/s41598-019-42190-1
Henriet, E. et al. Argininosuccinate synthase 1 (ASS1): a marker of unclassified hepatocellular adenoma and high bleeding risk. Hepatology 66, 2016–2028 (2017).
pubmed: 28646562 doi: 10.1002/hep.29336
Bouyssie, D. et al. Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics 36, 3148–3155 (2020).
pubmed: 32096818 pmcid: 7214047 doi: 10.1093/bioinformatics/btaa118

Auteurs

Dong Shin Park (DS)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Tatsuya Kozaki (T)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Satish Kumar Tiwari (SK)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Marco Moreira (M)

INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.

Ahad Khalilnezhad (A)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Federico Torta (F)

Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.

Nicolas Olivié (N)

Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.

Chung Hwee Thiam (CH)

Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Oniko Liani (O)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Aymeric Silvin (A)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.

Wint Wint Phoo (WW)

Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.

Liang Gao (L)

Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.

Alexander Triebl (A)

Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.

Wai Kin Tham (WK)

Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.

Leticia Gonçalves (L)

INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.

Wan Ting Kong (WT)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.

Sethi Raman (S)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Xiao Meng Zhang (XM)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Garett Dunsmore (G)

INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.

Charles Antoine Dutertre (CA)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.

Salanne Lee (S)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Jia Min Ong (JM)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Akhila Balachander (A)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Shabnam Khalilnezhad (S)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.

Josephine Lum (J)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Kaibo Duan (K)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Ze Ming Lim (ZM)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Leonard Tan (L)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Ivy Low (I)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Kagistia Hana Utami (KH)

Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research, Singapore, Singapore.

Xin Yi Yeo (XY)

Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore.

Sylvaine Di Tommaso (S)

Oncoprot Platform, TBM-Core US 005, Bordeaux, France.

Jean-William Dupuy (JW)

Bordeaux Protéome, University of Bordeaux, Bordeaux, France.

Balazs Varga (B)

Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.

Ragnhildur Thora Karadottir (RT)

Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.

Mufeeda Changaramvally Madathummal (MC)

A*STAR Microscopy Platform Electron Microscopy, Research Support Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

Isabelle Bonne (I)

Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Benoit Malleret (B)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
A*STAR Microscopy Platform Electron Microscopy, Research Support Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

Zainab Yasin Binte (ZY)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Ngan Wei Da (N)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Yingrou Tan (Y)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Wei Jie Wong (WJ)

Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Jinqiu Zhang (J)

Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research, Singapore, Singapore.

Jinmiao Chen (J)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Radoslaw M Sobota (RM)

Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.

Shanshan W Howland (SW)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.

Lai Guan Ng (LG)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Frédéric Saltel (F)

Oncoprot Platform, TBM-Core US 005, Bordeaux, France.

David Castel (D)

INSERM U981, Molecular Predictors and New Targets in Oncology & Département de Cancérologie de l'Enfant et de l'Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France.

Jacques Grill (J)

INSERM U981, Molecular Predictors and New Targets in Oncology & Département de Cancérologie de l'Enfant et de l'Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France.

Veronique Minard (V)

INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.

Salvatore Albani (S)

Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.

Jerry K Y Chan (JKY)

Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.

Morgane Sonia Thion (MS)

Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.

Sang Yong Jung (SY)

Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore.
Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea.

Markus R Wenk (MR)

Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.

Mahmoud A Pouladi (MA)

Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research, Singapore, Singapore.
Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.

Claudia Pasqualini (C)

INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.

Veronique Angeli (V)

Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Olivier N F Cexus (ONF)

Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore.
School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.

Florent Ginhoux (F)

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore. florent_ginhoux@immunol.a-star.edu.sg.
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. florent_ginhoux@immunol.a-star.edu.sg.
INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France. florent_ginhoux@immunol.a-star.edu.sg.
Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore. florent_ginhoux@immunol.a-star.edu.sg.
Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. florent_ginhoux@immunol.a-star.edu.sg.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH