Differential patterns of lysosomal dysfunction are seen in the clinicopathological forms of primary progressive aphasia.
Endo-lysosomal proteins
Frontotemporal dementia
Primary progressive aphasia
Ubiquitin
Journal
Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161
Informations de publication
Date de publication:
Mar 2024
Mar 2024
Historique:
received:
15
08
2023
accepted:
12
10
2023
revised:
11
10
2023
medline:
27
2
2024
pubmed:
2
11
2023
entrez:
2
11
2023
Statut:
ppublish
Résumé
Increasing evidence implicates endo-lysosomal dysfunction in frontotemporal dementia (FTD). 18 proteins were quantified using a mass spectrometry assay panel in the cerebrospinal fluid of 36 people with the language variant of FTD, primary progressive aphasia (PPA) (including 13 with non-fluent variant (nfvPPA), 11 with semantic variant (svPPA), and 12 with logopenic variant (lvPPA)) and 19 healthy controls. The concentrations of the cathepsins (B, D, F, L1, and Z) as well as AP-2 complex subunit beta, ganglioside GM2 activator, beta-hexosaminidase subunit beta, tissue alpha L-fucosidase, and ubiquitin were decreased in nfvPPA compared with controls. In contrast, the concentrations of amyloid beta A4 protein, cathepsin Z, and dipeptidyl peptidase 2 were decreased in svPPA compared with controls. No proteins were abnormal in lvPPA. These results indicate a differential alteration of lysosomal proteins in the PPA variants, suggesting those with non-Alzheimer's pathologies are more likely to show abnormal lysosomal function.
Identifiants
pubmed: 37917233
doi: 10.1007/s00415-023-12063-9
pii: 10.1007/s00415-023-12063-9
pmc: PMC10896779
doi:
Substances chimiques
Amyloid beta-Peptides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1277-1285Subventions
Organisme : Medical Research Council
ID : MR/M008525/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T046015/1
Pays : United Kingdom
Informations de copyright
© 2023. The Author(s).
Références
Marshall CR, Hardy CJD, Volkmer A, Russell LL, Bond RL, Fletcher PD, Clark CN, Mummery CJ, Schott JM, Rossor MN, Fox NC, Crutch SJ, Rohrer JD, Warren JD (2018) Primary progressive aphasia: a clinical approach. J Neurol 265:1474–1490
doi: 10.1007/s00415-018-8762-6
pubmed: 29392464
pmcid: 5990560
Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014
doi: 10.1212/WNL.0b013e31821103e6
pubmed: 21325651
pmcid: 3059138
Graff-Radford J, Duffy JR, Strand EA, Josephs KA (2012) Parkinsonian motor features distinguish the agrammatic from logopenic variant of primary progressive aphasia. Parkinsonism Relat Disord 18:890–892
doi: 10.1016/j.parkreldis.2012.04.011
pubmed: 22575236
pmcid: 3424382
Kremen SA, Mendez MF, Tsai PH, Teng E (2011) Extrapyramidal signs in the primary progressive aphasias. Am J Alzheimers Dis Other Demen 26:72–77
doi: 10.1177/1533317510391239
pubmed: 21282281
pmcid: 3139562
Hodges JR, Patterson K (2007) Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol 6:1004–1014
doi: 10.1016/S1474-4422(07)70266-1
pubmed: 17945154
Henry ML, Gorno-Tempini ML (2010) The logopenic variant of primary progressive aphasia. Curr Opin Neurol 23:633–637
doi: 10.1097/WCO.0b013e32833fb93e
pubmed: 20852419
pmcid: 3201824
Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, Kapogiannis D (2015) Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 85:40–47
doi: 10.1212/WNL.0000000000001702
pubmed: 26062630
pmcid: 4501943
Boman A, Svensson S, Boxer A, Rojas JC, Seeley WW, Karydas A, Miller B, Kagedal K, Svenningsson P (2016) Distinct lysosomal network protein profiles in Parkinsonian syndrome cerebrospinal fluid. J Parkinsons Dis 6:307–315
doi: 10.3233/JPD-150759
pubmed: 27061067
pmcid: 4927933
Parnetti L, Balducci C, Pierguidi L, De Carlo C, Peducci M, D’Amore C, Padiglioni C, Mastrocola S, Persichetti E, Paciotti S, Bellomo G, Tambasco N, Rossi A, Beccari T, Calabresi P (2009) Cerebrospinal fluid beta-glucocerebrosidase activity is reduced in Dementia with Lewy Bodies. Neurobiol Dis 34:484–486
doi: 10.1016/j.nbd.2009.03.002
pubmed: 19303930
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VMY (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133
doi: 10.1126/science.1134108
pubmed: 17023659
Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96
doi: 10.1146/annurev.pharmtox.051208.165340
pubmed: 18834306
Scotter EL, Vance C, Nishimura AL, Lee YB, Chen HJ, Urwin H, Sardone V, Mitchell JC, Rogelj B, Rubinsztein DC, Shaw CE (2014) Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species. J Cell Sci 127:1263–1278
pubmed: 24424030
pmcid: 3953816
Jiang S, Bhaskar K (2020) Degradation and transmission of tau by autophagic-endolysosomal networks and potential therapeutic targets for tauopathy. Front Mol Neurosci 13:586731
doi: 10.3389/fnmol.2020.586731
pubmed: 33177989
pmcid: 7596180
Blennow K, Zetterberg H, Fagan AM (2012) Fluid biomarkers in Alzheimer disease. Cold Spring Harb Perspect Med. 2(9):a006221
doi: 10.1101/cshperspect.a006221
pubmed: 22951438
pmcid: 3426814
Brinkmalm G, Sjödin S, Simonsen AH, Hasselbalch SG, Zetterberg H, Brinkmalm A, Blennow K (2018) A parallel reaction monitoring mass spectrometric method for analysis of potential CSF biomarkers for Alzheimer’s disease. Proteomics Clin Appl 12:1700131
doi: 10.1002/prca.201700131
Sjödin S, Brinkmalm G, Öhrfelt A, Parnetti L, Paciotti S, Hansson O, Hardy J, Blennow K, Zetterberg H, Brinkmalm A (2019) Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer’s and Parkinson’s disease. Alzheimers Res Ther 11:82
doi: 10.1186/s13195-019-0533-9
pubmed: 31521194
pmcid: 6745076
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968
doi: 10.1093/bioinformatics/btq054
pubmed: 20147306
pmcid: 2844992
Zaidi N, Maurer A, Nieke S, Kalbacher H (2008) Cathepsin D: a cellular roadmap. Biochem Biophys Res Commun 376:5–9
doi: 10.1016/j.bbrc.2008.08.099
pubmed: 18762174
Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824:68–88
doi: 10.1016/j.bbapap.2011.10.002
pubmed: 22024571
Schwagerl AL, Mohan PS, Cataldo AM, Vonsattel JP, Kowall NW, Nixon RA (1995) Elevated levels of the endosomal-lysosomal proteinase cathepsin D in cerebrospinal fluid in Alzheimer disease. J Neurochem 64:443–446
doi: 10.1046/j.1471-4159.1995.64010443.x
pubmed: 7798944
Valdez C, Wong YC, Schwake M, Bu G, Wszolek ZK, Krainc D (2017) Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet 26:4861
doi: 10.1093/hmg/ddx364
pubmed: 29036611
pmcid: 5886207
Lemieux MJ, Mark BL, Cherney MM, Withers SG, Mahuran DJ, James MNG (2006) Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis. J Mol Biol 359:913–929
doi: 10.1016/j.jmb.2006.04.004
pubmed: 16698036
pmcid: 2910082
Kolter T, Sandhoff K (2010) Lysosomal degradation of membrane lipids. FEBS Lett 584:1700–1712
doi: 10.1016/j.febslet.2009.10.021
pubmed: 19836391
Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S (2007) LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 26:313–324
doi: 10.1038/sj.emboj.7601511
pubmed: 17245426
pmcid: 1783450
Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635
doi: 10.1038/nrm2745
pubmed: 19672277
Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 35:385–398
doi: 10.1016/j.nbd.2009.05.023
pubmed: 19505575
Armstrong A, Mattsson N, Appelqvist H, Janefjord C, Sandin L, Agholme L, Olsson B, Svensson S, Blennow K, Zetterberg H, Kågedal K (2014) Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer’s disease. Neuromolecular Med 16:150–160
doi: 10.1007/s12017-013-8269-3
pubmed: 24101586
Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med. 2(5):a006270
doi: 10.1101/cshperspect.a006270
pubmed: 22553493
pmcid: 3331683
Müller UC, Zheng H (2012) Physiological functions of APP family proteins. Cold Spring Harb Perspect Med. 2(2):a006288
doi: 10.1101/cshperspect.a006288
pubmed: 22355794
pmcid: 3281588
McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533
doi: 10.1038/nrm3151
pubmed: 21779028
Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479
doi: 10.1146/annurev.biochem.67.1.425
pubmed: 9759494
Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229
doi: 10.1146/annurev-biochem-060310-170328
pubmed: 22524316
Blennow kaj T, Davidsson P, Wallin A, Gottfries CG, Svennerholm L, (1994) Ubiquitin in cerebrospinal fluid in Alzheimer’s disease and vascular dementia. Int Psychogeriatr 6:13–22
doi: 10.1017/S1041610294001584