Dorsal raphe stimulation relays a reward signal to the ventral tegmental area via GluN2C NMDA receptors.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2023
2023
Historique:
received:
11
07
2023
accepted:
15
10
2023
medline:
8
11
2023
pubmed:
6
11
2023
entrez:
6
11
2023
Statut:
epublish
Résumé
Glutamate relays a reward signal from the dorsal raphe (DR) to the ventral tegmental area (VTA). However, the role of the different subtypes of N-methyl-D-aspartate (NMDA) receptors is complex and not clearly understood. Therefore, we measured NMDA receptors subunits expression in limbic brain areas. In addition, we studied the effects of VTA down-regulation of GluN2C NMDA receptor on the reward signal that arises from DR electrical stimulation. Using qPCR, we identified the relative composition of the different Grin2a-d subunits of the NMDA receptors in several brain areas. Then, we used fluorescent in situ hybridization (FISH) to evaluate the colocalization of Grin2c and tyrosine hydroxylase (TH) mRNA in VTA neurons. To assess the role of GluN2C in brain stimulation reward, we downregulated this receptor using small interfering RNA (siRNA) in rats self-stimulating for electrical pulses delivered to the DR. To delineate further the specific role of GluN2C in relaying the reward signal, we pharmacologically altered the function of VTA NMDA receptors by bilaterally microinjecting the NMDA receptor antagonist PPPA. We identified GluN2C as the most abundant subunit of the NMDA receptor expressed in the VTA. FISH revealed that about 50% of TH-positive neurons colocalize with Grin2c transcript. siRNA manipulation produced a selective down-regulation of the GluN2C protein subunit and a significant reduction in brain stimulation reward. Interestingly, PPPA enhanced brain stimulation reward, but only in rats that received the nonactive RNA sequence. The present results suggest that VTA glutamate neurotransmission relays a reward signal initiated by DR stimulation by acting on GluN2C NMDA receptors.
Sections du résumé
BACKGROUND
Glutamate relays a reward signal from the dorsal raphe (DR) to the ventral tegmental area (VTA). However, the role of the different subtypes of N-methyl-D-aspartate (NMDA) receptors is complex and not clearly understood. Therefore, we measured NMDA receptors subunits expression in limbic brain areas. In addition, we studied the effects of VTA down-regulation of GluN2C NMDA receptor on the reward signal that arises from DR electrical stimulation.
METHODS
Using qPCR, we identified the relative composition of the different Grin2a-d subunits of the NMDA receptors in several brain areas. Then, we used fluorescent in situ hybridization (FISH) to evaluate the colocalization of Grin2c and tyrosine hydroxylase (TH) mRNA in VTA neurons. To assess the role of GluN2C in brain stimulation reward, we downregulated this receptor using small interfering RNA (siRNA) in rats self-stimulating for electrical pulses delivered to the DR. To delineate further the specific role of GluN2C in relaying the reward signal, we pharmacologically altered the function of VTA NMDA receptors by bilaterally microinjecting the NMDA receptor antagonist PPPA.
RESULTS
We identified GluN2C as the most abundant subunit of the NMDA receptor expressed in the VTA. FISH revealed that about 50% of TH-positive neurons colocalize with Grin2c transcript. siRNA manipulation produced a selective down-regulation of the GluN2C protein subunit and a significant reduction in brain stimulation reward. Interestingly, PPPA enhanced brain stimulation reward, but only in rats that received the nonactive RNA sequence.
CONCLUSION
The present results suggest that VTA glutamate neurotransmission relays a reward signal initiated by DR stimulation by acting on GluN2C NMDA receptors.
Identifiants
pubmed: 37930965
doi: 10.1371/journal.pone.0293564
pii: PONE-D-23-21669
pmc: PMC10627466
doi:
Substances chimiques
Receptors, N-Methyl-D-Aspartate
0
Glutamic Acid
3KX376GY7L
RNA, Small Interfering
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0293564Informations de copyright
Copyright: © 2023 Hernandez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
No, there is no conflict of interest. My manuscript contains the following statement: "The authors declare that they have no conflict of interest."
Références
Annu Rev Psychol. 1989;40:191-225
pubmed: 2648975
Nat Rev Neurosci. 2004 Jun;5(6):483-94
pubmed: 15152198
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7281-8
pubmed: 19342487
Brain Res Brain Res Rev. 1997 Dec;25(3):312-34
pubmed: 9495561
Neuroscience. 2002;114(2):475-92
pubmed: 12204216
Brain Res. 1985 Dec 16;359(1-2):246-59
pubmed: 4075148
Science. 1992 Oct 23;258(5082):665-7
pubmed: 1329209
Neuron. 2014 Mar 19;81(6):1360-1374
pubmed: 24656254
Neuroscience. 1992 Jul;49(1):63-72
pubmed: 1357587
Behav Brain Res. 1987 Mar;23(3):205-19
pubmed: 3580107
J Chem Neuroanat. 2011 Jul;41(4):281-93
pubmed: 21640185
Eur J Neurosci. 1993 Feb 1;5(2):137-44
pubmed: 8261095
Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
pubmed: 12184808
Science. 1992 Oct 23;258(5082):597-603
pubmed: 1329206
Eur Neuropsychopharmacol. 2013 Nov;23(11):1623-35
pubmed: 23352316
Sci Rep. 2016 Nov 17;6:37171
pubmed: 27853270
Pharmacol Biochem Behav. 1983 Mar;18(3):433-42
pubmed: 6835998
PLoS One. 2010 Nov 30;5(11):e15081
pubmed: 21152097
Science. 2009 May 22;324(5930):1080-4
pubmed: 19389999
Neuron. 2012 Jun 7;74(5):858-73
pubmed: 22681690
Neuropharmacology. 1998 Oct-Nov;37(10-11):1355-67
pubmed: 9849671
Psychol Rev. 1981 May;88(3):228-73
pubmed: 6264530
Biol Psychiatry. 2007 Jan 1;61(1):65-9
pubmed: 16712807
Nature. 2007 Jan 11;445(7124):168-76
pubmed: 17151600
Cell. 2018 Aug 9;174(4):1015-1030.e16
pubmed: 30096299
Neuroscience. 2018 Jun 1;380:49-62
pubmed: 29559384
Neuroscience. 2001;107(4):629-39
pubmed: 11720786
Synapse. 2009 Oct;63(10):895-906
pubmed: 19582784
J Neurosci. 2000 May 15;20(10):3864-73
pubmed: 10804226
J Neurosci. 1984 Nov;4(11):2877-90
pubmed: 6150071
J Neurosci. 2012 Aug 8;32(32):11032-41
pubmed: 22875936
Trends Neurosci. 2020 Mar;43(3):155-169
pubmed: 32101709
Front Syst Neurosci. 2013 Oct 03;7:57
pubmed: 24106463
J Neurosci. 2001 Feb 15;21(4):1228-37
pubmed: 11160393
Neuroreport. 1995 Dec 29;7(1):45-8
pubmed: 8742413
Physiol Behav. 1986;37(1):85-91
pubmed: 3016774
Sci Rep. 2016 Dec 06;6:38321
pubmed: 27922130
Physiol Rev. 1992 Jan;72(1):165-229
pubmed: 1731370
Neuron. 1994 Mar;12(3):529-40
pubmed: 7512349
Neurobiol Learn Mem. 2011 May;95(4):404-14
pubmed: 21295149
Sci Rep. 2019 May 20;9(1):7572
pubmed: 31110197
Behav Brain Res. 1990 Feb 12;37(1):1-7
pubmed: 2310490
Trends Neurosci. 2007 May;30(5):220-7
pubmed: 17400299
Prog Neurobiol. 1980;14(2-3):69-97
pubmed: 6999537
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13491-6
pubmed: 20616081
J Neurochem. 2003 Oct;87(1):205-19
pubmed: 12969267
Brain Res. 1998 Mar 9;786(1-2):143-52
pubmed: 9554987
Neuropsychopharmacology. 2015 Jun;40(7):1682-91
pubmed: 25578795
Science. 1992 May 22;256(5060):1217-21
pubmed: 1350383
Brain Res. 1977 Aug 19;132(1):186-93
pubmed: 890477
J Biol Chem. 1993 Feb 5;268(4):2836-43
pubmed: 8428958
Ann N Y Acad Sci. 2003 Nov;1003:36-52
pubmed: 14684434
Synapse. 1992 Feb;10(2):131-40
pubmed: 1533955
Front Behav Neurosci. 2016 Aug 26;10:161
pubmed: 27616984
Behav Biol. 1976 Mar;16(3):353-64
pubmed: 132167
Science. 1997 Mar 14;275(5306):1593-9
pubmed: 9054347
Nat Commun. 2014 Nov 12;5:5390
pubmed: 25388237
Cell Rep. 2014 Sep 25;8(6):1857-1869
pubmed: 25242321
Biol Psychiatry. 2016 Nov 1;80(9):671-681
pubmed: 27209241
FEBS Lett. 2015 Dec 21;589(24 Pt A):3714-26
pubmed: 26505674
J Neurosci. 1996 May 15;16(10):3511-20
pubmed: 8627384