Ice Isn't the Only Crystal in Town: Structure Determination of Ice-Binding Proteins via X-Ray Crystallography.
Cryo-EM
Experimental techniques
IBPs
Ice binding
Ice-binding proteins
NMR spectroscopy
Protein folding
Protein structures
Protein tertiary structure
Structural biology
X-ray crystallography
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
10
11
2023
pubmed:
9
11
2023
entrez:
9
11
2023
Statut:
ppublish
Résumé
Ice-binding proteins (IBPs) are proteins that have the remarkable ability to bind to ice, and their study has intrigued researchers for decades. This chapter explores the importance of structural biology in understanding IBPs and highlights the significant contributions of IBPs to the field of structural biology. The structures of various IBPs from different organisms have been elucidated, revealing key elements involved in ice binding. Structural biology techniques, including nuclear magnetic resonance (NMR) spectroscopy, transmission electron cryo-microscopy (cryo-EM), and X-ray crystallography, play crucial roles in solving protein structures. This article focuses on X-ray crystallography as a tool for investigating IBP structures, providing insights into its theoretical and practical aspects, experimental workflows, and common pitfalls to avoid.
Identifiants
pubmed: 37943449
doi: 10.1007/978-1-0716-3503-2_3
doi:
Substances chimiques
Carrier Proteins
0
Ice
0
Caspase 1
EC 3.4.22.36
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
35-62Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Sicheri F, Yang DS (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427–431
doi: 10.1038/375427a0
pubmed: 7760940
Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for the binding of a globular antifreeze protein to ice. Nature 384:285–288
doi: 10.1038/384285a0
pubmed: 8918883
Graether SP et al (2000) β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325–328
doi: 10.1038/35018610
pubmed: 10917537
Liou Y-C, Tocilj A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406:322–324
doi: 10.1038/35018604
pubmed: 10917536
Leinala EK et al (2002) A beta-helical antifreeze protein isoform with increased activity. Structural and functional insights. J Biol Chem 277:33349–33352
doi: 10.1074/jbc.M205575200
pubmed: 12105229
Liu Y et al (2007) Structure and evolutionary origin of Ca
doi: 10.1371/journal.pone.0000548
pubmed: 17579720
pmcid: 1891086
Pentelute BL et al (2008) X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. J Am Chem Soc 130:9695–9701
doi: 10.1021/ja8013538
pubmed: 18598029
pmcid: 2719301
Middleton AJ et al (2012) Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 416:713–724
doi: 10.1016/j.jmb.2012.01.032
pubmed: 22306740
Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. PNAS 108:7363–7367
doi: 10.1073/pnas.1100429108
pubmed: 21482800
pmcid: 3088597
Lee JH et al (2012) Structural basis for antifreeze activity of ice-binding protein from arctic yeast. J Biol Chem 287:11460–11468
doi: 10.1074/jbc.M111.331835
pubmed: 22303017
pmcid: 3322824
Kondo H et al (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. PNAS 109:9360–9365
doi: 10.1073/pnas.1121607109
pubmed: 22645341
pmcid: 3386094
Hakim A et al (2013) Crystal structure of an insect antifreeze protein and its implications for ice binding. J Biol Chem 288:12295–12304
doi: 10.1074/jbc.M113.450973
pubmed: 23486477
pmcid: 3636913
Sun T, Lin F-H, Campbell RL, Allingham JS, Davies PL (2014) An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science 343:795–798
doi: 10.1126/science.1247407
pubmed: 24531972
Wang Y et al (2020) Carrot ‘antifreeze’ protein has an irregular ice-binding site that confers weak freezing point depression but strong inhibition of ice recrystallization. Biochem J 477:2179–2192
doi: 10.1042/BCJ20200238
pubmed: 32459306
Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data Bank. Nat Struct Mol Biol 10:980–980
doi: 10.1038/nsb1203-980
Wukovitz SW, Yeates TO (1995) Why protein crystals favour some space-groups over others. Nat Struct Mol Biol 2:1062–1067
doi: 10.1038/nsb1295-1062
Niedzialkowska E et al (2016) Protein purification and crystallization artifacts: the tale usually not told. Protein Sci 25:720–733
doi: 10.1002/pro.2861
pubmed: 26660914
pmcid: 4815408
Till M et al (2013) Improving the success rate of protein crystallization by random microseed matrix screening. J Vis Exp. https://doi.org/10.3791/50548
Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132
doi: 10.1107/S0907444909047337
pubmed: 20124692
pmcid: 2815665
Winter G et al (2018) DIALS: implementation and evaluation of a new integration package. Acta Crystallogr D Struct Biol 74:85–97
doi: 10.1107/S2059798317017235
pubmed: 29533234
pmcid: 5947772
Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69:1204–1214
doi: 10.1107/S0907444913000061
pubmed: 23793146
pmcid: 3689523
Adams PD et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221
doi: 10.1107/S0907444909052925
pubmed: 20124702
pmcid: 2815670
Winn MD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242
doi: 10.1107/S0907444910045749
pubmed: 21460441
pmcid: 3069738
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of coot. Acta Crystallogr D Biol Crystallogr 66:486–501
doi: 10.1107/S0907444910007493
pubmed: 20383002
pmcid: 2852313
Terwilliger TC et al (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D 64:61–69
doi: 10.1107/S090744490705024X
pubmed: 18094468
Cowtan K (2006) The buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002–1011
doi: 10.1107/S0907444906022116
pubmed: 16929101
Williams CJ et al (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315
doi: 10.1002/pro.3330
pubmed: 29067766
Holm L (2020) Using dali for protein structure comparison. Methods Mol Biol 2112:29–42
doi: 10.1007/978-1-0716-0270-6_3
pubmed: 32006276
Ewart KV, Yang DS, Ananthanarayanan VS, Fletcher GL, Hew CL (1996) Ca
doi: 10.1074/jbc.271.28.16627
pubmed: 8663288
Ashkenazy H et al (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344–W350
doi: 10.1093/nar/gkw408
pubmed: 27166375
pmcid: 4987940