Multiscale Molecular Dynamics Simulations of Ice-Binding Proteins.

Ice-binding proteins Interfacial water Molecular dynamics simulation

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2024
Historique:
medline: 10 11 2023
pubmed: 9 11 2023
entrez: 9 11 2023
Statut: ppublish

Résumé

Ice-binding proteins (IBPs) are a diverse class of proteins that are essential for the survival of organisms in cold conditions. IBPs are diverse in their function and can prevent or promote ice growth and selectively bind to specific crystallographic planes of the growing ice lattice. Moreover, IBPs are widely utilized to modulate ice crystal growth and recrystallization in the food industry and as cryoprotectants to preserve biological matter. A key unresolved aspect of the mode of action is how the ice-binding sites of these proteins distinguish between ice and water and interact with multiple crystal facets of the ice. The use of molecular dynamics (MD) simulation allows us to thoroughly investigate the binding mechanism and energetics of ice-binding proteins, to complement and expand on the mechanistic understandings gained from experiments. In this chapter, we describe a series of molecular dynamics simulation methodologies to investigate the mechanism of action of ice-binding proteins. Specifically, we provide detailed instructions to set up MD simulations to study the binding and interaction of ice-binding proteins using atomistic and coarse-grained simulations.

Identifiants

pubmed: 37943459
doi: 10.1007/978-1-0716-3503-2_13
doi:

Substances chimiques

Carrier Proteins 0
Ice 0
Caspase 1 EC 3.4.22.36
Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

185-202

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590. https://doi.org/10.1038/267585a0
doi: 10.1038/267585a0 pubmed: 301613
Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652. https://doi.org/10.1038/nsb0902-646
doi: 10.1038/nsb0902-646 pubmed: 12198485
DeVries Arthur L, Wohlschlag Donald E (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075. https://doi.org/10.1126/science.163.3871.1073
doi: 10.1126/science.163.3871.1073
DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem 245:2901–2908. https://doi.org/10.1016/S0021-9258(18)63073-X
doi: 10.1016/S0021-9258(18)63073-X pubmed: 5488456
Bar Dolev M, Braslavsky I, Davies PL (2016) Ice-binding proteins and their function. Annu Rev Biochem 85:515–542. https://doi.org/10.1146/annurev-biochem-060815-014546
doi: 10.1146/annurev-biochem-060815-014546 pubmed: 27145844
Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39:548–555. https://doi.org/10.1016/j.tibs.2014.09.005
doi: 10.1016/j.tibs.2014.09.005 pubmed: 25440715
Wolber PK et al (1986) Identification and purification of a bacterial ice-nucleation protein. Proc Natl Acad Sci 83:7256. https://doi.org/10.1073/pnas.83.19.7256
doi: 10.1073/pnas.83.19.7256 pubmed: 3020542 pmcid: 386694
Hartmann S et al (2013) Immersion freezing of ice nucleation active protein complexes. Atmos Chem Phys 13:5751–5766. https://doi.org/10.5194/acp-13-5751-2013
doi: 10.5194/acp-13-5751-2013
Liou Y-C, Tocilj A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406:322–324. https://doi.org/10.1038/35018604
doi: 10.1038/35018604 pubmed: 10917536
Leinala EK et al (2002) A β-helical antifreeze protein isoform with increased activity: structural and functional insights*. J Biol Chem 277:33349–33352. https://doi.org/10.1074/jbc.M205575200
doi: 10.1074/jbc.M205575200 pubmed: 12105229
Hakim A et al (2013) Crystal structure of an insect antifreeze protein and its implications for ice binding*. J Biol Chem 288:12295–12304. https://doi.org/10.1074/jbc.M113.450973
doi: 10.1074/jbc.M113.450973 pubmed: 23486477 pmcid: 3636913
Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci 108:7363. https://doi.org/10.1073/pnas.1100429108
doi: 10.1073/pnas.1100429108 pubmed: 21482800 pmcid: 3088597
Hudait A, Odendahl N, Qiu Y, Paesani F, Molinero V (2018) Ice-nucleating and antifreeze proteins recognize ice through a diversity of anchored clathrate and ice-like motifs. J Am Chem Soc 140:4905–4912. https://doi.org/10.1021/jacs.8b01246
doi: 10.1021/jacs.8b01246 pubmed: 29564892
Hudait A et al (2018) Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Proc Natl Acad Sci 115:8266. https://doi.org/10.1073/pnas.1806996115
doi: 10.1073/pnas.1806996115 pubmed: 29987018 pmcid: 6099916
Qiu Y, Hudait A, Molinero V (2019) How size and aggregation of ice-binding proteins control their ice nucleation efficiency. J Am Chem Soc 141:7439–7452. https://doi.org/10.1021/jacs.9b01854
doi: 10.1021/jacs.9b01854 pubmed: 30977366
Hudait A, Qiu Y, Odendahl N, Molinero V (2019) Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice-nucleating proteins to ice. J Am Chem Soc 141:7887–7898. https://doi.org/10.1021/jacs.9b02248
doi: 10.1021/jacs.9b02248 pubmed: 31020830
Pandey R et al (2016) Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci Adv 2:e1501630. https://doi.org/10.1126/sciadv.1501630
doi: 10.1126/sciadv.1501630 pubmed: 27152346 pmcid: 4846457
Graether SP, Jia Z (2001) Modeling pseudomonas syringae ice-nucleation protein as a beta-helical protein. Biophys J 80:1169–1173. https://doi.org/10.1016/S0006-3495(01)76093-6
doi: 10.1016/S0006-3495(01)76093-6 pubmed: 11222281 pmcid: 1301312
MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. https://doi.org/10.1021/jp973084f
doi: 10.1021/jp973084f pubmed: 24889800
MacKerell AD, Feig M, Brooks CL (2004) Improved treatment of the protein backbone in empirical force fields. J Am Chem Soc 126:698–699. https://doi.org/10.1021/ja036959e
doi: 10.1021/ja036959e pubmed: 14733527
Meister K et al (2015) Investigation of the ice-binding site of an insect antifreeze protein using sum-frequency generation spectroscopy. J Phys Chem Lett 6:1162–1167. https://doi.org/10.1021/acs.jpclett.5b00281
doi: 10.1021/acs.jpclett.5b00281 pubmed: 26262966
Odendahl N (2016) Comparison of popular force fields for molecular modelling of proteins applied to ice binding Tenebrio Molitor antifreeze proteins. B.S. in Chemistry Honors thesis, The University of Utah, Salt Lake City
Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123:234505. https://doi.org/10.1063/1.2121687
doi: 10.1063/1.2121687 pubmed: 16392929
Babin V, Leforestier C, Paesani F (2013) Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J Chem Theory Comput 9:5395–5403. https://doi.org/10.1021/ct400863t
doi: 10.1021/ct400863t pubmed: 26592277
Babin V, Medders GR, Paesani F (2014) Development of a “first principles” water potential with flexible monomers. II: trimer potential energy surface, third virial coefficient, and small clusters. J Chem Theory Comput 10:1599–1607. https://doi.org/10.1021/ct500079y
doi: 10.1021/ct500079y pubmed: 26580372
Medders GR, Babin V, Paesani F (2014) Development of a “first-principles” water potential with flexible monomers. III. Liquid phase properties. J Chem Theory Comput 10:2906–2910. https://doi.org/10.1021/ct5004115
doi: 10.1021/ct5004115 pubmed: 26588266
Horn HW et al (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678. https://doi.org/10.1063/1.1683075
doi: 10.1063/1.1683075 pubmed: 15267980
Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271. https://doi.org/10.1021/j100308a038
doi: 10.1021/j100308a038
Abascal JLF, Sanz E, García Fernández R, Vega C (2005) A potential model for the study of ices and amorphous water: TIP4P/ice. J Chem Phys 122:234511. https://doi.org/10.1063/1.1931662
doi: 10.1063/1.1931662 pubmed: 16008466
Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290
doi: 10.1002/jcc.20290 pubmed: 16200636 pmcid: 1989667
Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E
doi: 10.1016/0010-4655(95)00042-E
Phillips JC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130. https://doi.org/10.1063/5.0014475
doi: 10.1063/5.0014475 pubmed: 32752662 pmcid: 7395834
Smith W, Yong CW, Rodger PM (2002) DL_POLY: application to molecular simulation. Mol Simul 28:385–471. https://doi.org/10.1080/08927020290018769
doi: 10.1080/08927020290018769
Thompson AP et al (2022) LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/j.cpc.2021.108171
doi: 10.1016/j.cpc.2021.108171
http://paesanigroup.ucsd.edu/software/mbx.html
Moore EB, Molinero V (2011) Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479:506–508. https://doi.org/10.1038/nature10586
doi: 10.1038/nature10586 pubmed: 22113691
Lupi L et al (2017) Role of stacking disorder in ice nucleation. Nature 551:218–222. https://doi.org/10.1038/nature24279
doi: 10.1038/nature24279 pubmed: 29120424
Hudait A, Molinero V (2014) Ice crystallization in ultrafine water–salt aerosols: nucleation, ice-solution equilibrium, and internal structure. J Am Chem Soc 136:8081–8093. https://doi.org/10.1021/ja503311r
doi: 10.1021/ja503311r pubmed: 24820354
Metya AK, Molinero V (2021) Is ice nucleation by organic crystals nonclassical? An assessment of the monolayer hypothesis of ice nucleation. J Am Chem Soc 143:4607–4624. https://doi.org/10.1021/jacs.0c12012
doi: 10.1021/jacs.0c12012 pubmed: 33729789
Hudait A, Molinero V (2016) What determines the ice polymorph in clouds? J Am Chem Soc 138:8958–8967. https://doi.org/10.1021/jacs.6b05227
doi: 10.1021/jacs.6b05227 pubmed: 27355985
Qiu Y, Molinero V (2018) Why is it so difficult to identify the onset of ice Premelting? J Phys Chem Lett 9:5179–5182. https://doi.org/10.1021/acs.jpclett.8b02244
doi: 10.1021/acs.jpclett.8b02244 pubmed: 30149705
Hudait A, Qiu S, Lupi L, Molinero V (2016) Free energy contributions and structural characterization of stacking disordered ices. Phys Chem Chem Phys 18:9544–9553. https://doi.org/10.1039/C6CP00915H
doi: 10.1039/C6CP00915H pubmed: 26983558
Molinero V, Moore EB (2009) Water modeled as an intermediate element between carbon and silicon. J Phys Chem B 113:4008–4016. https://doi.org/10.1021/jp805227c
doi: 10.1021/jp805227c pubmed: 18956896
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5
doi: 10.1016/0263-7855(96)00018-5 pubmed: 8744570
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118
doi: 10.1063/1.448118
Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17:1302–1322. https://doi.org/10.1103/PhysRevB.17.1302
doi: 10.1103/PhysRevB.17.1302
Grønbech-Jensen N, Farago O (2013) A simple and effective Verlet-type algorithm for simulating Langevin dynamics. Mol Phys 111:983–991. https://doi.org/10.1080/00268976.2012.760055
doi: 10.1080/00268976.2012.760055
Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5
doi: 10.1016/0021-9991(77)90098-5
Andersen HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52:24–34. https://doi.org/10.1016/0021-9991(83)90014-1
doi: 10.1016/0021-9991(83)90014-1
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397
doi: 10.1063/1.464397
Kolafa J (2004) Time-reversible always stable predictor–corrector method for molecular dynamics of polarizable molecules. J Comput Chem 25:335–342. https://doi.org/10.1002/jcc.10385
doi: 10.1002/jcc.10385 pubmed: 14696069
Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693
doi: 10.1063/1.328693
Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189. https://doi.org/10.1063/1.467468
doi: 10.1063/1.467468
Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271. https://doi.org/10.1103/PhysRevB.31.5262
doi: 10.1103/PhysRevB.31.5262
Fileti EE, Chaudhuri P, Canuto S (2004) Relative strength of hydrogen bond interaction in alcohol–water complexes. Chem Phys Lett 400:494–499. https://doi.org/10.1016/j.cplett.2004.10.149
doi: 10.1016/j.cplett.2004.10.149
Jacobson LC, Hujo W, Molinero V (2010) Amorphous precursors in the nucleation of clathrate hydrates. J Am Chem Soc 132:11806–11811. https://doi.org/10.1021/ja1051445
doi: 10.1021/ja1051445 pubmed: 20669949
Kamberaj H, Low RJ, Neal MP (2005) Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules. J Chem Phys 122:224114. https://doi.org/10.1063/1.1906216
doi: 10.1063/1.1906216 pubmed: 15974658
Miller TF et al (2002) Symplectic quaternion scheme for biophysical molecular dynamics. J Chem Phys 116:8649–8659. https://doi.org/10.1063/1.1473654
doi: 10.1063/1.1473654
Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199. https://doi.org/10.1016/0021-9991(77)90121-8
doi: 10.1016/0021-9991(77)90121-8
Steinhardt PJ, Nelson DR, Ronchetti M (1983) Bond-orientational order in liquids and glasses. Phys Rev B 28:784–805. https://doi.org/10.1103/PhysRevB.28.784
doi: 10.1103/PhysRevB.28.784
Grossfield A, WHAM; version 2.0.6, http://membrane.urmc.rochester.edu/content/wham
Errington JR, Debenedetti PG (2001) Relationship between structural order and the anomalies of liquid water. Nature 409:318–321. https://doi.org/10.1038/35053024
doi: 10.1038/35053024 pubmed: 11201735

Auteurs

Arpa Hudait (A)

Department of Chemistry, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL, USA. ahudait@uchicago.edu.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Animals Humans Sarcomeres Muscle Proteins Carrier Proteins
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction

Classifications MeSH