Unraveling the potential of environmental DNA for deciphering recent advances in plant-animal interactions: a systematic review.
Biodiversity extinction
Conservation management
Ecosystem integrity
Environmental DNA
Molecular ecology
Plant–animal interactions
Journal
Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576
Informations de publication
Date de publication:
13 Nov 2023
13 Nov 2023
Historique:
received:
29
05
2023
accepted:
18
10
2023
medline:
15
11
2023
pubmed:
14
11
2023
entrez:
13
11
2023
Statut:
epublish
Résumé
Environmental DNA-based monitoring provides critical insights for enhancing our understanding of plant-animal interactions in the context of worldwide biodiversity decrease for developing a global framework for effective plant biodiversity conservation. To understand the ecology and evolutionary patterns of plant-animal interactions (PAI) and their pivotal roles in ecosystem functioning advances in molecular ecology tools such as Environmental DNA (eDNA) provide unprecedented research avenues. These methods being non-destructive in comparison to traditional biodiversity monitoring methods, enhance the discernment of ecosystem health, integrity, and complex interactions. This review intends to offer a systematic and critical appraisal of the prospective of eDNA for investigating PAI. The review thoroughly discusses and analyzes the recent reports (2015-2022) employing preferred reporting items for systematic reviews and meta-analyses (PRISMA) to outline the recent progression in eDNA approaches for elucidating PAI. The current review envisages that eDNA has a significant potential to monitor both plants and associated cohort of prospective pollinators (avian species and flowering plants, bees and plants, arthropods and plants, bats and plants, etc.). Furthermore, a brief description of the factors that influence the utility and interpretation of PAI eDNA is also presented. The review establishes that factors such as biotic and abiotic, primer selection and taxonomic resolution, and indeterminate spatio-temporal scales impact the availability and longevity of eDNA. The study also identified the limitations that influence PAI detection and suggested possible solutions for better execution of these molecular approaches. Overcoming these research caveats will augment the assortment of PAI analysis through eDNA that could be vital for ecosystem health and integrity. This review forms a critical guide and offers prominent insights for ecologists, environmental managers and researchers to assess and evaluate plant-animal interaction through environmental DNA.
Identifiants
pubmed: 37957258
doi: 10.1007/s00425-023-04267-0
pii: 10.1007/s00425-023-04267-0
doi:
Substances chimiques
DNA, Environmental
0
Types de publication
Systematic Review
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
117Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abbott C, Coulson M, Gagné N, Lacoursière-Roussel A, Parent GJ, Bajno R, Dietrich C, May-McNally S (2021) Guidance on the use of targeted environmental DNA (eDNA) analysis for the management of aquatic invasive species and species at risk. Canadian Science Advisory Secretariat (CSAS), Ottawa
Alberdi A, Aizpurua O, Bohmann K, Gopalakrishnan S, Lynggaard C, Nielsen M, Gilbert MTP (2019) Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol Ecol Resour 19(2):327–348
pubmed: 30358108
Anglès d’Auriac MB, Strand DA, Mjelde M, Demars BO, Thaulow J (2019) Detection of an invasive aquatic plant in natural water bodies using environmental DNA. PLoS ONE 14(7):e0219700
pubmed: 31299064
pmcid: 6625730
Arstingstall KA, DeBano SJ, Li X, Wooster DE, Rowland MM, Burrows S, Frost K (2021) Capabilities and limitations of using DNA metabarcoding to study plant–pollinator interactions. Mol Ecol 30(20):5266–5297
pubmed: 34390062
Baboo B, Sagar R, Bargali S, Verma H (2017) Tree species composition, regeneration and diversity of an Indian dry tropical forest protected area. Trop Ecol 58(2):409–423
Banerjee P, Dey G, Antognazza CM, Sharma RK, Maity JP, Chan MW, Huang Y-H, Lin P-Y, Chao H-C, Lu C-M (2021) Reinforcement of environmental DNA based methods (sensu stricto) in biodiversity monitoring and conservation: a review. Biology 10(12):1223
pubmed: 34943137
pmcid: 8698464
Banerjee P, Stewart KA, Antognazza CM, Bunholi IV, Deiner K, Barnes MA, Saha S, Verdier H, Doi H, Maity JP (2022) Plant–animal interactions in the era of environmental DNA (eDNA)—a review. Environ DNA. 4(5):987–999
Banerjee P, Stewart KA, Dey G, Sharma RK, Maity JP, Chan MW, Chang KP, Chen T-H, Hsu C-T, Chen C-Y (2022) When conventional methods fall short: identification of invasive cryptic golden apple snails (Pomacea canaliculata; P. maculata) using environmental DNA. Hydrobiologia. 849(19):4241–4257
Bargali K, Joshi B, Bargali S, Singh S (2014) Diversity within Oaks. Int Oaks 25:57–70
Bargali K, Joshi B, Bargali S, Singh SP (2015) Oaks and the biodiversity they sustain. International Oaks 26:65–76
Bell KL, Loeffler VM, Brosi BJ (2017) An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Appl Plant Sci 5(3):1600110
Bell KL, Turo KJ, Lowe A, Nota K, Keller A, Encinas-Viso F, Parducci L, Richardson RT, Leggett RM, Brosi BJ (2022) Plants, pollinators and their interactions under global ecological change: the role of pollen DNA metabarcoding. Mol Ecol. https://doi.org/10.1111/mec.16689
doi: 10.1111/mec.16689
pubmed: 36086900
pmcid: 10150372
Bell KL, Batchelor KL, Bradford M, McKeown A, Macdonald SL, Westcott D (2021) Optimisation of a pollen DNA metabarcoding method for diet analysis of flying-foxes (Pteropus spp.). Aust J Zool 68:273–284
Beng KC, Corlett RT (2020) Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers Conserv 29:2089–2121
Berzaghi F, Verbeeck H, Nielsen MR, Doughty C, Bretagnolle F, Marchetti M, Scarascia-Mugnozza G (2018) Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles–the potential of vegetation models. Ecography 41(12):1934–1954
Biggs J, Ewald N, Valentini A, Gaboriaud C, Dejean T, Griffiths RA, Foster J, Wilkinson JW, Arnell A, Brotherton P (2015) Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol Cons 183:19–28
Bisht S, Bargali SS, Bargali K, Rawat GS, Rawat YS, Fartyal A (2022) Influence of anthropogenic activities on forest carbon stocks—a case study from Gori Valley Western Himalaya. Sustainability 14(24):16918
Bisht S, Rawat G, Bargali SS, Rawat Y, Mehta A (2023) Forest vegetation response to anthropogenic pressures: a case study from Askot Wildlife Sanctuary Western Himalaya. Environ Dev and Sustain. https://doi.org/10.1007/s10668-023-03130-2
doi: 10.1007/s10668-023-03130-2
Bommerlund J, Baars J, Schrøder-Nielsen A, Brys R, Mauvisseau C, de Boer H, Mauvisseau Q (2023) eDNA-based detection as an early warning tool for detecting established and emerging invasive amphipods. Manag Biol Invasions. 14(2):321–333
Bourret V, Albert V, April J, Côté G, Morissette O (2020) Past, present and future contributions of evolutionary biology to wildlife forensics, management and conservation. Evol Appl 13(6):1420–1434
pubmed: 32684967
pmcid: 7359848
Bovo S, Ribani A, Utzeri VJ, Schiavo G, Bertolini F, Fontanesi L (2018) Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13(10):e0205575
pubmed: 30379893
pmcid: 6209200
Bruce K, Blackman RC, Bourlat SJ, Hellström M, Bakker J, Bista I, Bohmann K, Bouchez A, Brys R, Clark K (2021) A practical guide to DNA-based methods for biodiversity assessment. Pensoft Advanced Books, Sofia
Buglione M, Maselli V, Rippa D, de Filippo G, Trapanese M, Fulgione D (2018) A pilot study on the application of DNA metabarcoding for non-invasive diet analysis in the Italian hare. Mamm Biol 88:31–42
Burian A, Mauvisseau Q, Bulling M, Domisch S, Qian S, Sweet M (2021) Improving the reliability of eDNA data interpretation. Mol Ecol Resour 21(5):1422–1433
pubmed: 33655639
Carvalho CS, De Oliveira ME, Rodriguez-Castro KG, Saranholi BH, Galetti PM Jr (2022) Efficiency of eDNA and iDNA in assessing vertebrate diversity and its abundance. Mol Ecol Resour 22(4):1262–1273
pubmed: 34724330
Chang H, Guo J, Fu X, Liu Y, Wyckhuys KA, Hou Y, Wu K (2018) Molecular-assisted pollen grain analysis reveals spatiotemporal origin of long-distance migrants of a noctuid moth. Int J Mol Sci 19(2):567
pubmed: 29438348
pmcid: 5855789
Chua PYS, Lammers Y, Menoni E, Ekrem T, Bohmann K, Boessenkool S, Alsos IG (2021) Molecular dietary analyses of western capercaillies (Tetrao urogallus) reveal a diverse diet. Environ DNA 3(6):1156–1171
Coghlan SA, Shafer AB, Freeland JR (2021) Development of an environmental DNA metabarcoding assay for aquatic vascular plant communities. Environ DNA 3(2):372–387
Coissac E, Riaz T, Puillandre N (2012) Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol Ecol 21(8):1834–1847
pubmed: 22486822
Cordier T, Esling P, Lejzerowicz F, Visco J, Ouadahi A, Martins C, Cedhagen T, Pawlowski J (2017) Predicting the ecological quality status of marine environments from eDNA metabarcoding data using supervised machine learning. Environ Sci Technol 51(16):9118–9126
pubmed: 28665601
Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK, Potter C, Bik HM (2016) The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7(9):1008–1018
Cristescu ME (2014) From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol Evol 29(10):566–571
pubmed: 25175416
Curtis AN, Tiemann JS, Douglass SA, Davis MA, Larson ER (2021) High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Divers Distrib 27(10):1918–1931
Darling JA, Mahon AR (2011) From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ Res 111(7):978–988
pubmed: 21353670
Davidar P, Sahoo S, Mammen PC, Acharya P, Puyravaud J-P, Arjunan M, Garrigues JP, Roessingh K (2010) Assessing the extent and causes of forest degradation in India: where do we stand? Biol Cons 143(12):2937–2944
De Vere N, Jones LE, Gilmore T, Moscrop J, Lowe A, Smith D, Hegarty MJ, Creer S, Ford CR (2017) Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci Rep 7(1):1–10
Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, De Vere N (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26(21):5872–5895
pubmed: 28921802
Deiner K, Yamanaka H, Bernatchez L (2021) The future of biodiversity monitoring and conservation utilizing environmental DNA. Environmental DNA 3(1):3–7
Deka PC (2022) Plant DNA Barcoding. Research anthology on ecosystem conservation and preserving biodiversity. IGI Global, Hershey, pp 493–515
Derocles SA, Evans DM, Nichols PC, Evans SA, Lunt DH (2015) Determining plant–leaf miner–parasitoid interactions: a DNA barcoding approach. PLoS ONE 10(2):e0117872
pubmed: 25710377
pmcid: 4339730
Derocles SA, Bohan DA, Dumbrell AJ, Kitson JJ, Massol F, Pauvert C, Plantegenest M, Vacher C, Evans DM (2018) Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis. Advances in ecological research, vol 58. Elsevier, New York, pp 1–62
Douchet P, Boissier J, Mulero S, Ferté H, Doberva M, Allienne JF, Toulza E, Bethune K, Rey O (2022) Make visible the invisible: optimized development of an environmental DNA metabarcoding tool for the characterization of trematode parasitic communities. Environ DNA. 4(3):627–641
Drummond JA, Larson ER, Li Y, Lodge DM, Gantz CA, Pfrender ME, Renshaw MA, Correa AM, Egan SP (2021) Diversity metrics are robust to differences in sampling location and depth for environmental DNA of plants in small Temperate Lakes. Front Environ Sci 9:617924
Edwards CE, Swift JF, Lance RF, Minckley TA, Lindsay DL (2019) Evaluating the efficacy of sample collection approaches and DNA metabarcoding for identifying the diversity of plants utilized by nectivorous bats. Genome 62(1):19–29
pubmed: 30481069
Glaubrecht M (2023) On the end of evolution–Humankind and the annihilation of species. Zool Scripta. https://doi.org/10.1111/zsc.12592
doi: 10.1111/zsc.12592
Goldberg AR, Conway CJ, Tank DC, Andrews KR, Gour DS, Waits LP (2020) Diet of a rare herbivore based on DNA metabarcoding of feces: selection, seasonality, and survival. Ecol Evol 10(14):7627–7643
pubmed: 32760553
pmcid: 7391308
Gous A, Swanevelder DZ, Eardley CD, Willows-Munro S (2019) Plant–pollinator interactions over time: pollen metabarcoding from bees in a historic collection. Evol Appl 12(2):187–197
pubmed: 30697333
Green AJ, Lovas-Kiss Á, Reynolds C, Sebastián-González E, Silva GG, van Leeuwen CH, Wilkinson DM (2023) Dispersal of aquatic and terrestrial organisms by waterbirds: a review of current knowledge and future priorities. Freshw Biol 68(2):173–190
Guan X, Monroe EM, Bockrath KD, Mize EL, Rees CB, Lindsay DL, Baerwaldt KL, Nico LG, Lance RF (2019) Environmental DNA (eDNA) assays for invasive populations of black carp in North America. Trans Am Fish Soc 148(6):1043–1055
Harper LR, Lawson Handley L, Hahn C, Boonham N, Rees HC, Gough KC, Lewis E, Adams IP, Brotherton P, Phillips S (2018) Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecol Evol 8(12):6330–6341
pubmed: 29988445
pmcid: 6024127
Harper LR, Buxton AS, Rees HC, Bruce K, Brys R, Halfmaerten D, Read DS, Watson HV, Sayer CD, Jones EP (2019) Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826:25–41
Harper LR, Niemiller ML, Benito JB, Paddock LE, Knittle E, Molano-Flores B, Davis MA (2023) BeeDNA: Microfluidic environmental DNA metabarcoding as a tool for connecting plant and pollinator communities. Environmental DNA 5(1):191–211
Hassan S, Khurshid Z, Bali BS, Ganai BA, Sayyed R, Poczai P, Zaman M (2022a) A critical assessment of the congruency between environmental DNA and palaeoecology for the biodiversity monitoring and palaeoenvironmental reconstruction. Int J Environ Res Public Health 19(15):9445
pubmed: 35954801
pmcid: 9368151
Hassan S, Poczai P, Ganai BA, Almalki WH, Gafur A, Sayyed R (2022b) Environmental DNA metabarcoding: a novel contrivance for documenting terrestrial biodiversity. Biology 11(9):1297
pubmed: 36138776
pmcid: 9495823
Hering D, Borja A, Jones JI, Pont D, Boets P, Bouchez A, Bruce K, Drakare S, Hänfling B, Kahlert M (2018) Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res 138:192–205
pubmed: 29602086
Hoshino T, Nakao R, Minamoto T (2021) Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique. Sci Rep 11(1):1–9
Htun NZ, Mizoue N, Yoshida S (2011) Tree species composition and diversity at different levels of disturbance in Popa Mountain Park. Myanmar Biotropica 43(5):597–603
Hua F, Bruijnzeel LA, Meli P, Martin PA, Zhang J, Nakagawa S, Miao X, Wang W, McEvoy C, Peña-Arancibia JL (2022) The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376(6595):839–844
pubmed: 35298279
Hutchins PR, Simantel LN, Sepulveda AJ (2022) Time to get real with qPCR controls: the frequency of sample contamination and the informative power of negative controls in environmental DNA studies. Mol Ecol Resour 22(4):1319–1329
pubmed: 34752687
Iacolina L, Lukassen MB, Fløjgaard C, Buttenschøn R, Nielsen JL, Pertoldi C (2020) eDNA and metabarcoding for rewilding projects monitoring, a dietary approach. Mamm Biol 100:411–418
Isbell F, Cowles J, Dee LE, Loreau M, Reich PB, Gonzalez A, Hector A, Schmid B (2018) Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol Lett 21(6):763–778
pubmed: 29493062
pmcid: 5957270
Iwanowicz DD, Vandergast AG, Cornman RS, Adams CR, Kohn JR, Fisher RN, Brehme CS (2016) Metabarcoding of fecal samples to determine herbivore diets: a case study of the endangered Pacific pocket mouse. PLoS ONE 11(11):e0165366
pubmed: 27851756
pmcid: 5112926
Johnson MD (2017) Detection and analysis of airborne environmental DNA from terrestrial plant communities.
Johnson MD, Cox RD, Barnes MA (2019) Analyzing airborne environmental DNA: a comparison of extraction methods, primer type, and trap type on the ability to detect airborne eDNA from terrestrial plant communities. Environ DNA 1(2):176–185
Johnson MD, Fokar M, Cox RD, Barnes MA (2021) Airborne environmental DNA metabarcoding detects more diversity, with less sampling effort, than a traditional plant community survey. BMC Ecol Evol 21(1):1–15
Johnson MD, Barnes MA, Garrett NR, Clare EL (2023) Answers blowing in the wind: detection of birds, mammals, and amphibians with airborne environmental DNA in a natural environment over a yearlong survey. Environmental DNA. https://doi.org/10.1002/edn3.388
doi: 10.1002/edn3.388
Johnson MD, Freeland JR, Parducci L, Evans DM, Meyer RS, Molano-Flores B, Davis MA (2023b) Environmental DNA as an emerging tool in botanical research. Am J Bot 110(2):e16120
pubmed: 36632660
Johnson MD, Katz AD, Davis MA, Tetzlaff S, Edlund D, Tomczyk S, Molano-Flores B, Wilder T, Sperry JH (2023) Environmental DNA metabarcoding from flowers reveals arthropod pollinators, plant pests, parasites, and potential predator–prey interactions while revealing more arthropod diversity than camera traps. Environ DNA. https://doi.org/10.1002/edn3.411
doi: 10.1002/edn3.411
Jones L, Twyford AD, Ford CR, Rich TC, Davies H, Forrest LL, Hart ML, McHaffie H, Brown MR, Hollingsworth PM (2021) Barcode UK: a complete DNA barcoding resource for the flowering plants and conifers of the United Kingdom. Mol Ecol Resour 21(6):2050–2062
pubmed: 33749162
Jønsson KA, Thomassen EE, Iova B, Sam K, Thomsen PF (2023) Using environmental DNA to investigate avian interactions with flowering plants. Environ DNA. https://doi.org/10.1002/edn3.393
doi: 10.1002/edn3.393
Kelly RP, Shelton AO, Gallego R (2019) Understanding PCR processes to draw meaningful conclusions from environmental DNA studies. Sci Rep 9(1):12133
pubmed: 31431641
pmcid: 6702206
Kestel JH, Field DL, Bateman PW, White NE, Allentoft ME, Hopkins AJ, Gibberd M, Nevill P (2022) Applications of environmental DNA (eDNA) in agricultural systems: current uses, limitations and future prospects. Sci Total Environ 847:157556
pubmed: 35882340
Kim P, Kim D, Yoon TJ, Shin S (2018) Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Mar Environ Res 139:1–10
pubmed: 29747863
Klepke MJ, Sigsgaard EE, Jensen MR, Olsen K, Thomsen PF (2022) Accumulation and diversity of airborne, eukaryotic environmental DNA. Environ DNA 4(6):1323–1339
Kodama T, Miyazono S, Akamatsu Y, Tsuji S, Nakao R (2022) Abundance estimation of riverine macrophyte Egeria densa using environmental DNA: effects of sampling season and location. Limnology. https://doi.org/10.1007/s10201-021-00689-5
doi: 10.1007/s10201-021-00689-5
Kraaijeveld K, De Weger LA, Ventayol García M, Buermans H, Frank J, Hiemstra PS, Den Dunnen JT (2015) Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol Ecol Resour 15(1):8–16
pubmed: 24893805
Krehenwinkel H, Weber S, Künzel S, Kennedy SR (2022) The bug in a teacup—monitoring arthropod–plant associations with environmental DNA from dried plant material. Biol Let 18(6):20220091
Kudoh A, Minamoto T, Yamamoto S (2020) Detection of herbivory: eDNA detection from feeding marks on leaves. Environ DNA 2(4):627–634
Kuehne LM, Ostberg CO, Chase DM, Duda JJ, Olden JD (2020) Use of environmental DNA to detect the invasive aquatic plants Myriophyllum spicatum and Egeria densa in lakes. Freshwater Sci 39(3):521–533
Kumar G, Eble JE, Gaither MR (2020) A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA. Mol Ecol Resour 20(1):29–39
pubmed: 31633859
Lacoursière-Roussel A, Deiner K (2021) Environmental DNA is not the tool by itself. J Fish Biol 98(2):383–386
pubmed: 31644816
Lacoursière-Roussel A, Howland K, Normandeau E, Grey EK, Archambault P, Deiner K, Lodge DM, Hernandez C, Leduc N, Bernatchez L (2018) eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecol Evol 8(16):7763–7777
pubmed: 30250661
pmcid: 6144963
Ladin ZS, Ferrell B, Dums JT, Moore RM, Levia DF, Shriver WG, D’Amico V, Trammell TL, Setubal JC, Wommack KE (2021) Assessing the efficacy of eDNA metabarcoding for measuring microbial biodiversity within forest ecosystems. Sci Rep 11(1):1–14
Leempoel K, Hebert T, Hadly EA (2020) A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proc R Soc B 287(1918):20192353
pubmed: 31937227
pmcid: 7003463
Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci 112(7):2076–2081
pubmed: 25646458
pmcid: 4343139
Lynggaard C, Frøslev TG, Johnson MS, Olsen MT, Bohmann K (2022) Airborne environmental DNA captures terrestrial vertebrate diversity in nature. BioRxiv. https://doi.org/10.1101/2022.10.24.512985
doi: 10.1101/2022.10.24.512985
Macgregor CJ, Kitson JJ, Fox R, Hahn C, Lunt DH, Pocock MJ, Evans DM (2019) Construction, validation, and application of nocturnal pollen transport networks in an agro-ecosystem: a comparison using light microscopy and DNA metabarcoding. Ecol Entomol 44(1):17–29
Macher JN, Vivancos A, Piggott JJ, Centeno FC, Matthaei CD, Leese F (2018) Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate cytochrome c oxidase I primers. Mol Ecol Resour 18(6):1456–1468
pubmed: 30129704
Mächler E, Osathanunkul M, Altermatt F (2018) Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms. PLoS ONE 13(4):e0195529
pubmed: 29624607
pmcid: 5889167
Manral V, Bargali K, Bargali S, Shahi C (2020) Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya, India. Ecol Process 9:1–9
Maréchaux I, Langerwisch F, Huth A, Bugmann H, Morin X, Reyer CP, Seidl R, Collalti A, Dantas de Paula M, Fischer R (2021) Tackling unresolved questions in forest ecology: the past and future role of simulation models. Ecol Evol 11(9):3746–3770
pubmed: 33976773
pmcid: 8093733
Marshall NT, Vanderploeg HA, Chaganti SR (2021) Environmental (e) RNA advances the reliability of eDNA by predicting its age. Sci Rep 11(1):2769
pubmed: 33531558
pmcid: 7854713
Matsuhashi S, Minamoto T, Doi H (2019) Seasonal change in environmental DNA concentration of a submerged aquatic plant species. Freshwater Sci. 38(3):654–660
Mauvisseau Q, Harper LR, Sander M, Hanner RH, Kleyer H, Deiner K (2022) The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environ Sci Technol 56(9):5322–5333
pubmed: 35435663
pmcid: 9069692
McGee KM, Robinson CV, Hajibabaei M (2019) Gaps in DNA-based biomonitoring across the globe. Front Ecol Evol 7:337
McKee AM, Spear SF, Pierson TW (2015) The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biol Cons 183:70–76
Milla L, Sniderman K, Lines R, Mousavi-Derazmahalleh M, Encinas-Viso F (2021) Pollen DNA metabarcoding identifies regional provenance and high plant diversity in Australian honey. Ecol Evol 11(13):8683–8698
pubmed: 34257922
pmcid: 8258210
Minuzzi-Souza TTC, Nitz N, Cuba CAC, Hagström L, Hecht MM, Santana C, Ribeiro M, Vital TE, Santalucia M, Knox M (2018) Surveillance of vector-borne pathogens under imperfect detection: lessons from Chagas disease risk (mis) measurement. Sci Rep 8(1):1–10
Monge O, Dumas D, Baus I (2020) Environmental DNA from avian residual saliva in fruits and its potential uses in population genetics. Conserv Genet Resour 12:131–139
Nagler M, Podmirseg SM, Ascher-Jenull J, Sint D, Traugott M (2022) Why eDNA fractions need consideration in biomonitoring. Mol Ecol Resour 22(7):2458–2470
pubmed: 35652762
pmcid: 9545497
Nakahama N, Furuta T, Ando H, Setsuko S, Takayanagi A, Isagi Y (2021) DNA meta-barcoding revealed that sika deer foraging strategies vary with season in a forest with degraded understory vegetation. For Ecol Manage 484:118637
Nevers MB, Przybyla-Kelly K, Shively D, Morris CC, Dickey J, Byappanahalli MN (2020) Influence of sediment and stream transport on detecting a source of environmental DNA. PLoS ONE 15(12):e0244086
pubmed: 33370371
pmcid: 7769486
Newton JP, Bateman PW, Heydenrych MJ, Kestel JH, Dixon KW, Prendergast KS, White NE, Nevill P (2023) Monitoring the birds and the bees: environmental DNA metabarcoding of flowers detects plant–animal interactions. Environ DNA. https://doi.org/10.1002/edn3.399
doi: 10.1002/edn3.399
Nichols RV, Cromsigt JP, Spong G (2015) DNA left on browsed twigs uncovers bite-scale resource use patterns in European ungulates. Oecologia 178:275–284
pubmed: 25543852
Nicholson A, McIsaac D, MacDonald C, Gec P, Mason BE, Rein W, Wrobel J, de Boer M, Milián-García Y, Hanner RH (2020) An analysis of metadata reporting in freshwater environmental DNA research calls for the development of best practice guidelines. Environmental DNA 2(3):343–349
Nogueira J, Evangelista H, Valeriano CdM, Sifeddine A, Neto C, Vaz G, Moreira LS, Cordeiro RC, Turcq B, Aniceto KC (2021) Dust arriving in the Amazon basin over the past 7,500 years came from diverse sources. Commun Earth Environ 2(1):5
Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7(2–3):57–66
Pandey R, Bargali SS, Bargali K, Pandey VC (2023) Temporal variability in fine root dynamics in relation to tree girth size in sub-tropical sal (Shorea robusta) forests. Land Degrad Dev 34(5):1522–1537
Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, Pedersen MW (2017) Ancient plant DNA in lake sediments. New Phytol 214(3):924–942
pubmed: 28370025
Parducci L, Alsos IG, Unneberg P, Pedersen MW, Han L, Lammers Y, Salonen JS, Väliranta MM, Slotte T, Wohlfarth B (2019) Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front Ecol Evol 7:189
Pascher K, Švara V, Jungmeier M (2022) Environmental DNA-based methods in biodiversity monitoring of protected areas: application range, limitations, and needs. Diversity 14(6):463
Pornon A, Escaravage N, Burrus M, Holota H, Khimoun A, Mariette J, Pellizzari C, Iribar A, Etienne R, Taberlet P (2016) Using metabarcoding to reveal and quantify plant-pollinator interactions. Sci Rep 6(1):1–12
Ptaszyńska AA (2022) A short guide to the sixth mass extinction–is the anthropocene an extended suicide? Rev Educ 395:27–41
Pyle MM, Adams RP (1989) In situ preservation of DNA in plant specimens. Taxon 38(4):576–581
Qiu J, Cardinale BJ (2020) Scaling up biodiversity–ecosystem function relationships across space and over time. Ecology 101(11):e03166
pubmed: 32854134
Rasmussen AJ, Nielsen M, Mak SS, Döring J, Klincke F, Gopalakrishnan S et al (2021) eDNA‐based biomonitoring at an experimental German vineyard to characterize how management regimes shape ecosystem diversity. Environ DNA 3(1):70–82
Rishan ST, Kline RJ, Rahman MS (2023) Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: a critical review on the challenges and limitations of eDNA metabarcoding. Environ Adv. 12:100370
Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, Bokulich NA (2021) RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput Biol 17(11):e1009581
pubmed: 34748542
pmcid: 8601625
Roger F, Ghanavi HR, Danielsson N, Wahlberg N, Löndahl J, Pettersson LB, Andersson GK, Boke Olén N, Clough Y (2022) Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—a proof of concept from the field. Environ DNA 4(4):790–807
Ruppert KM, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Global Ecol Conserv 17:e00547
Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U, Elersek T, Fazi S, Fleituch T (2021) Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res 191:116767
pubmed: 33418487
Scott R, Zhan A, Brown EA, Chain FJ, Cristescu ME, Gras R, MacIsaac HJ (2018) Optimization and performance testing of a sequence processing pipeline applied to detection of nonindigenous species. Evol Appl 11(6):891–905
pubmed: 29928298
pmcid: 5999198
Sepulveda AJ, Schabacker J, Smith S, Al-Chokhachy R, Luikart G, Amish SJ (2019) Improved detection of rare, endangered and invasive trout in using a new large-volume sampling method for eDNA capture. Environmental DNA 1(3):227–237
Sepulveda AJ, Hutchins PR, Forstchen M, Mckeefry MN, Swigris AM (2020a) The elephant in the lab (and field): contamination in aquatic environmental DNA studies. Front Ecol Evol 8:609973
Sepulveda AJ, Nelson NM, Jerde CL, Luikart G (2020b) Are environmental DNA methods ready for aquatic invasive species management? Trends Ecol Evol 35(8):668–678
pubmed: 32371127
Seymour M, Edwards FK, Cosby BJ, Bista I, Scarlett PM, Brailsford FL, Glanville HC, de Bruyn M, Carvalho GR, Creer S (2021) Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Communications Biology 4(1):512
pubmed: 33941836
pmcid: 8093236
Singh JS (2002) The biodiversity crisis: a multifaceted review. Curr Sci 82(6):638–647
Soininen EM, Zinger L, Gielly L, Yoccoz NG, Henden J-A, Ims RA (2017) Not only mosses: lemming winter diets as described by DNA metabarcoding. Polar Biol 40:2097–2103
Spicer ME, Woods CL (2022) A case for studying biotic interactions in epiphyte ecology and evolution. Perspect Plant Ecol Evol Syst 54:125658
Steel ZL, Jones GM, Collins BM, Green R, Koltunov A, Purcell KL, Sawyer SC, Slaton MR, Stephens SL, Stine P (2023) Mega-disturbances cause rapid decline of mature conifer forest habitat in California. Ecol Appl 33(2):e2763
pubmed: 36264047
Stewart KA (2019) Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers Conserv 28(5):983–1001
Stewart KA, Taylor SA (2020) Leveraging eDNA to expand the study of hybrid zones. Mol Ecol 29(15):2768–2776
pubmed: 32557920
pmcid: 7496085
Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35(3):e14–e14
pubmed: 17169982
Thomsen PF, Sigsgaard EE (2019) Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecol Evol 9(4):1665–1679
pubmed: 30847063
pmcid: 6392377
Thomsen PF, Willerslev E (2015) Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. Biol Cons 183:4–18
Tian HA (2021) Assessing the biotic and abiotic factors influencing the distribution and intensity of cyanobacterial harmful algal blooms in Dog Lake, South Frontenac using UAV imaging and eDNA. Queen’s University, Kingston
Tsuri K, Ikeda S, Hirohara T, Shimada Y, Minamoto T, Yamanaka H (2021) Messenger RNA typing of environmental RNA (eRNA): a case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates. Environ DNA 3(1):14–21
Turvey ST, Crees JJ (2019) Extinction in the anthropocene. Curr Biol 29(19):R982–R986
pubmed: 31593681
Utzeri VJ, Schiavo G, Ribani A, Tinarelli S, Bertolini F, Bovo S, Fontanesi L (2018) Entomological signatures in honey: an environmental DNA metabarcoding approach can disclose information on plant-sucking insects in agricultural and forest landscapes. Sci Rep 8(1):9996
pubmed: 29968727
pmcid: 6030050
Valentin RE, Fonseca DM, Gable S, Kyle KE, Hamilton GC, Nielsen AL, Lockwood JL (2020) Moving eDNA surveys onto land: strategies for active eDNA aggregation to detect invasive forest insects. Mol Ecol Resour 20(3):746–755
Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol 25(4):929–942
pubmed: 26479867
van Beeck Calkoen ST, Leigh-Moy K, Cromsigt JP, Spong G, Lebeau LC, Heurich M (2019) The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. For Ecol Manage 451:117483
van der Heyde M, Bunce M, Nevill P (2022) Key factors to consider in the use of environmental DNA metabarcoding to monitor terrestrial ecological restoration. Sci Total Environ. 848:157617
pubmed: 35901901
Vasconcelos T, Boyko JD, Beaulieu JM (2023) Linking mode of seed dispersal and climatic niche evolution in flowering plants. J Biogeogr 50(1):43–56
Veilleux HD, Misutka MD, Glover CN (2021) Environmental DNA and environmental RNA: current and prospective applications for biological monitoring. Sci Total Environ 782:146891
pubmed: 33848866
Vidal F (2023) The anthropocene new stage: the era of boundaries. The palgrave handbook of environmental politics and theory. Springer, New York, pp 599–626
Wang K, Xie H, Li Y, Wu W, Xu C (2016) Morphology and molecular analysis of Paratylenchus nanjingensis n. sp. (Nematoda: Paratylenchinae) from the rhizosphere soil of Pinus massoniana in China. J Helminthol. 90(2):166–173
pubmed: 26821707
Yuan S-C, Chin S-W, Lee C-Y, Chen F-C (2018) Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Bot Stud 59(1):1–8
pubmed: 29299696
pmcid: 5752644
Zhang DQ, Wang M, He Q, Niu X, Liang Y (2020) Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: from soil adsorption and plant uptake to effects on microbial community. Environ Pollut 257:113575
pubmed: 31733970
Zinger L, Bonin A, Alsos IG, Bálint M, Bik H, Boyer F, Chariton AA, Creer S, Coissac E, Deagle BE (2019) DNA metabarcoding—need for robust experimental designs to draw sound ecological conclusions, vol 28. Wiley Online Library, New York