Transcriptome and Physiological Analysis of Rapeseed Tolerance to Post-Flowering Temperature Increase.
Brassica napus
gene coexpression network analysis
heat stress
post-flowering temperature increase
seed number
seed weight
seed yield
transcriptome analysis
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
26 Oct 2023
26 Oct 2023
Historique:
received:
01
09
2023
revised:
12
10
2023
accepted:
18
10
2023
medline:
15
11
2023
pubmed:
14
11
2023
entrez:
14
11
2023
Statut:
epublish
Résumé
Climate-change-induced temperature fluctuations pose a significant threat to crop production, particularly in the Southern Hemisphere. This study investigates the transcriptome and physiological responses of rapeseed to post-flowering temperature increases, providing valuable insights into the molecular mechanisms underlying rapeseed tolerance to heat stress. Two rapeseed genotypes, Lumen and Solar, were assessed under control and heat stress conditions in field experiments conducted in Valdivia, Chile. Results showed that seed yield and seed number were negatively affected by heat stress, with genotype-specific responses. Lumen exhibited an average of 9.3% seed yield reduction, whereas Solar showed a 28.7% reduction. RNA-seq analysis of siliques and seeds revealed tissue-specific responses to heat stress, with siliques being more sensitive to temperature stress. Hierarchical clustering analysis identified distinct gene clusters reflecting different aspects of heat stress adaptation in siliques, with a role for protein folding in maintaining silique development and seed quality under high-temperature conditions. In seeds, three distinct patterns of heat-responsive gene expression were observed, with genes involved in protein folding and response to heat showing genotype-specific expression. Gene coexpression network analysis revealed major modules for rapeseed yield and quality, as well as the trade-off between seed number and seed weight. Overall, this study contributes to understanding the molecular mechanisms underlying rapeseed tolerance to heat stress and can inform crop improvement strategies targeting yield optimization under changing environmental conditions.
Identifiants
pubmed: 37958577
pii: ijms242115593
doi: 10.3390/ijms242115593
pmc: PMC10648292
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
F1000Res. 2020 Jul 15;9:
pubmed: 33564394
Plant J. 2018 Sep;95(6):947-960
pubmed: 29920827
BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7
pubmed: 16723010
Plant Sci. 2023 Feb;327:111559
pubmed: 36496054
BMC Genomics. 2023 May 4;24(1):236
pubmed: 37142980
BMC Res Notes. 2012 Jan 19;5:45
pubmed: 22260178
Plant Cell. 2011 Jun;23(6):2045-63
pubmed: 21666000
PLoS Biol. 2007 Jan;5(1):e8
pubmed: 17214507
Plant Biotechnol J. 2019 Apr;17(4):736-749
pubmed: 30191657
Bioinformatics. 2008 Mar 1;24(5):719-20
pubmed: 18024473
BMC Bioinformatics. 2008 Dec 29;9:559
pubmed: 19114008
Plant J. 2016 Feb;85(3):348-61
pubmed: 26708041
Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045
pubmed: 27924042
PLoS One. 2019 May 31;14(5):e0217148
pubmed: 31150427
Plant Cell Environ. 2006 Jan;29(1):48-58
pubmed: 17086752
Front Plant Sci. 2021 Jan 07;11:622748
pubmed: 33584763
Development. 2006 Jan;133(2):251-61
pubmed: 16339187
J Exp Bot. 2004 Feb;55(396):485-95
pubmed: 14739270
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20115-20
pubmed: 19892740
Plant Direct. 2023 Feb 22;7(2):e485
pubmed: 36845169
Genes Dev. 1999 Dec 1;13(23):3160-9
pubmed: 10601041
Plant Cell Physiol. 2005 Mar;46(3):522-30
pubmed: 15695447
Nat Methods. 2017 Jul;14(7):687-690
pubmed: 28581496
Front Plant Sci. 2018 Jul 18;9:921
pubmed: 30073005
Front Plant Sci. 2022 Apr 22;13:844292
pubmed: 35528932
J Exp Bot. 2015 Mar;66(5):1543-52
pubmed: 25582452
J Exp Bot. 2001 Sep;52(362):1779-84
pubmed: 11520866
J Exp Bot. 2020 Jan 7;71(2):555-568
pubmed: 31560053
Nat Biotechnol. 2016 May;34(5):525-7
pubmed: 27043002
Int J Mol Sci. 2019 Oct 25;20(21):
pubmed: 31731530
Funct Integr Genomics. 2022 Feb;22(1):131-136
pubmed: 34787733
Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198
pubmed: 31066453
J Exp Bot. 2020 Jan 7;71(2):543-554
pubmed: 31232445
Plant Cell Physiol. 2019 Jul 1;60(7):1457-1470
pubmed: 30994920
BMC Plant Biol. 2020 Feb 22;20(1):86
pubmed: 32087683
J Plant Physiol. 2013 Dec 15;170(18):1579-84
pubmed: 23910376
PLoS One. 2010 Sep 28;5(9):
pubmed: 20927193
Front Plant Sci. 2022 Apr 05;13:832147
pubmed: 35449889
Plant Cell Environ. 2020 Oct;43(10):2523-2539
pubmed: 32519347
J Integr Plant Biol. 2020 Aug;62(8):1093-1111
pubmed: 32009278
Mol Plant. 2012 Sep;5(5):1082-99
pubmed: 22402261
J Exp Bot. 2021 Apr 2;72(8):2822-2844
pubmed: 33619527
Plant Cell. 2004;16 Suppl:S32-45
pubmed: 15131247
Nat Biotechnol. 2001 Oct;19(10):965-9
pubmed: 11581664
Plant Physiol. 2005 May;138(1):451-60
pubmed: 15863701
Front Plant Sci. 2022 Jan 03;12:732988
pubmed: 35046968
Int J Mol Sci. 2021 Apr 24;22(9):
pubmed: 33923211