Adjusted vascular contractility relies on integrity of progranulin pathway: Insights into mitochondrial function.

Progranulin Reactive Oxygen Species Vascular contractility mitochondria

Journal

bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187

Informations de publication

Date de publication:
01 Nov 2023
Historique:
pubmed: 14 11 2023
medline: 14 11 2023
entrez: 14 11 2023
Statut: epublish

Résumé

Cardiovascular disease (CVD) is a global health crisis and a leading cause of mortality. The intricate interplay between vascular contractility and mitochondrial function is central to CVD pathogenesis. The progranulin gene (GRN) encodes glycoprotein progranulin (PGRN), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in CVD remains enigmatic. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. Our investigation utilized aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice, encompassing wire myograph assays to assess vascular contractility and primary aortic vascular smooth muscle cells (VSMCs) for mechanistic insights. Our results showed suppression of contractile activity in PGRN-/- VSMCs and aorta, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency impaired mitochondrial oxygen consumption rate (OCR), complex I activity, mitochondrial turnover, and mitochondrial redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted OCR. In addition, VSMC overexpressing PGRN displayed higher mitochondrial respiration and complex I activity accompanied by cellular hypercontractility. Furthermore, increased PGRN triggered lysosome biogenesis by regulating transcription factor EB and accelerated mitophagy flux in VSMC, while treatment with spermidine, an autophagy inducer, improved mitochondrial phenotype and enhanced vascular contractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/- suggesting a key role of PGRN to maintain the vascular tone. Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial complex I activity, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in CVD development.

Identifiants

pubmed: 37961631
doi: 10.1101/2023.10.27.564485
pmc: PMC10634918
pii:
doi:

Types de publication

Preprint

Langues

eng

Subventions

Organisme : NIDDK NIH HHS
ID : R01 DK090242
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD103602
Pays : United States

Déclaration de conflit d'intérêts

DECLARATION OF INTERESTS The authors declare no competing interests.

Références

Nat Med. 2014 Oct;20(10):1099-100
pubmed: 25295938
Biomed Res Int. 2014;2014:238463
pubmed: 24818134
J Bioenerg Biomembr. 2012 Aug;44(4):421-37
pubmed: 22689143
J Dermatol Sci. 2020 Jun;98(3):152-162
pubmed: 32376151
Biochem Pharmacol. 2022 Jan;195:114859
pubmed: 34843718
Kidney Int. 2015 May;87(5):918-29
pubmed: 25607110
Circ Res. 2020 Jan 31;126(3):298-314
pubmed: 31818196
PLoS One. 2017 Jan 11;12(1):e0169999
pubmed: 28076385
J Mol Med (Berl). 2019 May;97(5):579-591
pubmed: 30863992
Hypertension. 2019 Dec;74(6):1399-1408
pubmed: 31656096
Circ Res. 2008 Feb 29;102(4):488-96
pubmed: 18096818
Life Sci. 2019 Mar 15;221:29-34
pubmed: 30721707
J Exp Med. 2017 Sep 4;214(9):2611-2628
pubmed: 28778989
Am J Physiol Cell Physiol. 2023 Jan 1;324(1):C183-C192
pubmed: 36468843
Front Biosci (Elite Ed). 2020 Jan 1;12(1):102-112
pubmed: 31585872
J Mol Endocrinol. 2015 Dec;55(3):231-43
pubmed: 26373796
Methods Mol Biol. 2018;1782:31-70
pubmed: 29850993
Cytokine. 2018 Jan;101:48-55
pubmed: 27527809
Front Pharmacol. 2022 May 13;13:887045
pubmed: 35645834
Biotechniques. 2009 Oct;47(4):867-9
pubmed: 19852770
J Cell Biol. 1982 Feb;92(2):289-98
pubmed: 6277961
J Mol Cell Cardiol. 2014 Jan;66:18-26
pubmed: 24445059
Proc Natl Acad Sci U S A. 2021 Jun 22;118(25):
pubmed: 34140407
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2653-8
pubmed: 16477035
Hypertension. 2004 May;43(5):1074-9
pubmed: 15007032
Exp Cell Res. 2018 Feb 15;363(2):321-331
pubmed: 29378169
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8457-8462
pubmed: 30948641
Sci Rep. 2020 Jul 16;10(1):11842
pubmed: 32678228
J Am Heart Assoc. 2023 Aug 15;12(16):e030353
pubmed: 37581395
Trends Pharmacol Sci. 2022 Aug;43(8):641-652
pubmed: 35039149
Neuroscience. 2013 Oct 10;250:8-19
pubmed: 23830905
Biomolecules. 2015 Jun 29;5(3):1319-38
pubmed: 26131977
Oxid Med Cell Longev. 2021 Nov 11;2021:3960773
pubmed: 34804365
Dev Cell. 2021 Oct 11;56(19):2765-2782.e10
pubmed: 34582749
Ann Transl Med. 2018 Jun;6(12):256
pubmed: 30069458
Exp Neurol. 2014 Mar;253:16-27
pubmed: 24374061
Antioxidants (Basel). 2023 Feb 25;12(3):
pubmed: 36978829
Arterioscler Thromb Vasc Biol. 2013 May;33(5):988-98
pubmed: 23430617
J Biol Chem. 2003 Jul 18;278(29):26597-603
pubmed: 12734177
Nature. 2022 Sep;609(7928):815-821
pubmed: 36071159
Int J Mol Sci. 2023 Feb 09;24(4):
pubmed: 36834896
Circulation. 2023 Feb 21;147(8):e93-e621
pubmed: 36695182
Neurobiol Dis. 2021 Jul;154:105360
pubmed: 33812000
Hypertension. 2011 Aug;58(2):271-9
pubmed: 21690486
Circulation. 2021 May 25;143(21):2091-2109
pubmed: 33709773
Antioxid Redox Signal. 2007 Mar;9(3):301-7
pubmed: 17184171
Cell Death Dis. 2019 Jul 8;10(7):524
pubmed: 31285425
Arterioscler Thromb Vasc Biol. 2016 Aug;36(8):1467-74
pubmed: 27312223
J Mol Cell Cardiol. 2020 Apr;141:93-104
pubmed: 32247641
PLoS One. 2013 Sep 30;8(9):e76679
pubmed: 24098801
Biochem J. 2011 Apr 15;435(2):297-312
pubmed: 21726199
J Cell Mol Med. 2016 Jun;20(6):1049-61
pubmed: 26992033
Nat Neurosci. 2022 Aug;25(8):1034-1048
pubmed: 35879464
Vascul Pharmacol. 2021 Aug;139:106881
pubmed: 34098096
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Methods Mol Biol. 2021;2310:113-159
pubmed: 34096002
Nat Protoc. 2017 Aug;12(8):1576-1587
pubmed: 28703790
Annu Rev Physiol. 2013;75:95-126
pubmed: 23157555
Nat Med. 2016 Dec;22(12):1428-1438
pubmed: 27841876
Autophagy. 2015 Nov 2;11(11):2014-2032
pubmed: 26391655
Acta Neuropathol Commun. 2014 Jul 15;2:78
pubmed: 25022663
Methods Enzymol. 2014;542:333-48
pubmed: 24862274
Circ Res. 1997 Apr;80(4):532-41
pubmed: 9118484
Cardiovasc Res. 2012 Jul 15;95(2):173-82
pubmed: 22392270
J Am Heart Assoc. 2020 Oct 20;9(19):e018074
pubmed: 33003981
Arterioscler Thromb Vasc Biol. 2018 Feb;38(2):414-424
pubmed: 29217510
Atherosclerosis. 2009 Sep;206(1):102-8
pubmed: 19321167
J Mol Neurosci. 2011 Nov;45(3):549-60
pubmed: 21611805
Arterioscler Thromb Vasc Biol. 2018 Jun;38(6):1255-1257
pubmed: 29793991
Aging Dis. 2021 Dec 1;12(8):1948-1963
pubmed: 34881079
Circ Res. 2007 Jan 5;100(1):15-26
pubmed: 17204661

Auteurs

Shubhnita Singh (S)

Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.

Ariane Bruder-Nascimento (A)

Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.

Rafael M Costa (RM)

Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.

Juliano V Alves (JV)

Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.

Sivakama Bharathi (S)

Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.

Eric S Goetzman (ES)

Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.
Genetic and Genomic Medicine Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.

Thiago Bruder-Nascimento (T)

Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA.

Classifications MeSH