Comparison between the impact of osmotic and NaCl treatments on the expression of genes coding for ion transporters in Oryza glaberrima Steud.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2023
2023
Historique:
received:
27
02
2023
accepted:
14
08
2023
medline:
17
11
2023
pubmed:
15
11
2023
entrez:
15
11
2023
Statut:
epublish
Résumé
We analyzed the expression of genes coding for Na+ transporters (OsHKT1.5, OsHKT1.1, OsSOS1, OsSOS2, OsNHX1, OsNHX2), Cl- transporter (OsNRT1, OsCLC, OsCCC1) and gene coding for the transcription factor DREB (OsDREB2) involved in response to desiccation in two cultivars of O. glaberrrima differing in salt-resistance (salt-tolerant cultivar (TOG5307) and salt-sensitive (TOG 5949)) exposed to NaCl, PEG or both agents present simultaneously. Seedlings were grown in iso-osmotic nutrient solution (Ψs = -0.47±0.02 MPa) containing PEG 6,000 12.9% (water stress), NaCl 75 mM (salt stress) and PEG 6.4% + NaCl 37.5 mM (MIX-treatment) during 1 and 7 days. Plants were analyzed for gene expression, mineral nutrients, and photosynthetic-related parameters. Na+ and Cl- accumulations in salt-treated plants were lower in roots and shoots of TOG5307 comparatively to TOG5949 while water content decreased in TOG5307. TOG5307 exhibited tolerance to water stress and maintained higher net photosynthesis and water use efficiency than TOG5949 in response to all treatments, but was less efficient for osmotic adjustment. Dehydration tolerance of TOG5307 involves a higher OsDREB2 expression. TOG5307 also exhibited a higher OsSOS1, OsSOS2, OsNHX1 and OsNHX2 expression than TOG5949 in response to salinity. OsHKT1.5 was slightly induced in the shoot. OsHKT1.1 was recorded in the shoots but remained undetectable in the roots. Chloride and sodium accumulations were strongly reduced in the shoots when PEG was present. Salinity resistance in Oryza glaberrima implies tolerance to dehydration as well as complementary strategies of Na+ exclusion through the SOS system and Na+ tolerance through vacuolar sequestration.
Identifiants
pubmed: 37967065
doi: 10.1371/journal.pone.0290752
pii: PONE-D-23-05750
pmc: PMC10650995
doi:
Substances chimiques
Sodium Chloride
451W47IQ8X
Membrane Transport Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0290752Informations de copyright
Copyright: © 2023 Prodjinoto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
BMC Plant Biol. 2013 Feb 27;13:32
pubmed: 23445750
Methods Mol Biol. 2000;132:365-86
pubmed: 10547847
Plant Mol Biol. 2011 Apr;75(6):567-78
pubmed: 21369877
Gene. 2019 Sep 10;713:143976
pubmed: 31306715
Int J Mol Sci. 2022 Jan 30;23(3):
pubmed: 35163547
PLoS One. 2018 Dec 20;13(12):e0208648
pubmed: 30571734
J Exp Bot. 2000 Apr;51(345):659-68
pubmed: 10938857
Physiol Plant. 2021 Apr;171(4):688-702
pubmed: 33034380
Mol Plant. 2014 Feb;7(2):261-3
pubmed: 23956073
New Phytol. 2015 Nov;208(3):668-73
pubmed: 26108441
Plants (Basel). 2022 Feb 28;11(5):
pubmed: 35270125
Plant Cell Physiol. 2006 Jan;47(1):32-42
pubmed: 16249326
Int J Mol Sci. 2018 Feb 06;19(2):
pubmed: 29415511
Plants (Basel). 2019 Dec 21;9(1):
pubmed: 31877741
Physiol Plant. 2022 Jan;174(1):e13638
pubmed: 35092312
Plant Cell Environ. 2006 Jun;29(6):1122-37
pubmed: 17080938
New Phytol. 2020 Feb;225(3):1091-1096
pubmed: 31006123
Rice (N Y). 2021 Jan 7;14(1):6
pubmed: 33415579
Plant J. 2017 Aug;91(4):657-670
pubmed: 28488420
Nature. 2006 Aug 24;442(7105):939-42
pubmed: 16878138
Plant Biotechnol J. 2018 Jan;16(1):310-321
pubmed: 28627026
Front Plant Sci. 2020 Jul 30;11:1130
pubmed: 32849692
Int J Mol Sci. 2022 Feb 14;23(4):
pubmed: 35216206
Front Plant Sci. 2021 Aug 13;12:680131
pubmed: 34484255
Plant Cell Environ. 2017 May;40(5):658-671
pubmed: 27987209
Innovation (Camb). 2020 Apr 24;1(1):100017
pubmed: 34557705
Arch Biochem Biophys. 1968 Apr;125(1):189-98
pubmed: 5655425
Plant Biol (Stuttg). 2022 Mar;24(2):356-366
pubmed: 34939275
Ann Bot. 2017 Jan;119(1):1-11
pubmed: 27707746
Genes (Basel). 2022 Jun 22;13(7):
pubmed: 35885900
3 Biotech. 2018 Feb;8(2):91
pubmed: 29430353
Plant J. 2019 Jan;97(1):148-163
pubmed: 30548719
Annu Rev Plant Biol. 2008;59:651-81
pubmed: 18444910
Biochem J. 1954 Jul;57(3):508-14
pubmed: 13181867
Front Plant Sci. 2020 Mar 25;11:265
pubmed: 32269578
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16360-5
pubmed: 12461173
Genet Mol Biol. 2017;40(1 suppl 1):326-345
pubmed: 28350038
Plant Cell Environ. 2010 Apr;33(4):566-89
pubmed: 19895402
J Exp Bot. 2014 Jun;65(9):2243-56
pubmed: 24659487
Physiol Plant. 2022 May;174(3):e13702
pubmed: 35524987
Nat Genet. 2005 Oct;37(10):1141-6
pubmed: 16155566
Plant Cell Physiol. 2006 Jun;47(6):799-804
pubmed: 16621843
Front Plant Sci. 2022 Jun 27;13:934877
pubmed: 35832230
Plant Physiol. 2016 May;171(1):494-507
pubmed: 26983995
J Plant Physiol. 2010 Nov 15;167(17):1448-56
pubmed: 20869134
Plant Sci. 2021 Dec;313:111047
pubmed: 34763851