The social and structural architecture of the yeast protein interactome.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 18 11 2022
accepted: 11 10 2023
medline: 11 12 2023
pubmed: 16 11 2023
entrez: 15 11 2023
Statut: ppublish

Résumé

Cellular functions are mediated by protein-protein interactions, and mapping the interactome provides fundamental insights into biological systems. Affinity purification coupled to mass spectrometry is an ideal tool for such mapping, but it has been difficult to identify low copy number complexes, membrane complexes and complexes that are disrupted by protein tagging. As a result, our current knowledge of the interactome is far from complete, and assessing the reliability of reported interactions is challenging. Here we develop a sensitive high-throughput method using highly reproducible affinity enrichment coupled to mass spectrometry combined with a quantitative two-dimensional analysis strategy to comprehensively map the interactome of Saccharomyces cerevisiae. Thousand-fold reduced volumes in 96-well format enabled replicate analysis of the endogenous GFP-tagged library covering the entire expressed yeast proteome

Identifiants

pubmed: 37968396
doi: 10.1038/s41586-023-06739-5
pii: 10.1038/s41586-023-06739-5
pmc: PMC10700138
doi:

Substances chimiques

Fungal Proteins 0
Proteome 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

192-200

Informations de copyright

© 2023. The Author(s).

Références

Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).
pubmed: 14562095 doi: 10.1038/nature02026
Collins, S. R. et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6, 439–450 (2007).
pubmed: 17200106 doi: 10.1074/mcp.M600381-MCP200
Gavin, A.-C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).
pubmed: 11805826 doi: 10.1038/415141a
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).
pubmed: 11805837 doi: 10.1038/415180a
Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).
pubmed: 16554755 doi: 10.1038/nature04670
Gavin, A.-C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).
pubmed: 16429126 doi: 10.1038/nature04532
Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).
pubmed: 27629641 doi: 10.1038/nature19949
Lössl, P., van de Waterbeemd, M. & Heck, A. J. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 35, 2634–2657 (2016).
pubmed: 27797822 pmcid: 5167345 doi: 10.15252/embj.201694818
Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol. Cell. Proteomics 17, 2284–2296 (2018).
pubmed: 30104208 pmcid: 6210218 doi: 10.1074/mcp.TIR118.000853
Meier, F. et al. Parallel accumulation–serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J. Proteome Res. 14, 5378–5387 (2015).
pubmed: 26538118 doi: 10.1021/acs.jproteome.5b00932
Goll, J. & Uetz, P. The elusive yeast interactome. Genome Biol. 7, 223 (2006).
pubmed: 16938899 pmcid: 1779532 doi: 10.1186/gb-2006-7-6-223
Keilhauer, E. C., Hein, M. Y. & Mann, M. Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE–MS) rather than affinity purification mass spectrometry (AP–MS). Mol. Cell. Proteomics 14, 120–135 (2015).
pubmed: 25363814 doi: 10.1074/mcp.M114.041012
Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47, D529–D541 (2018).
pmcid: 6324058 doi: 10.1093/nar/gky1079
Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).
pubmed: 18719252 pmcid: 2746753 doi: 10.1126/science.1158684
Alonso-López, D. et al. APID database: redefining protein–protein interaction experimental evidences and binary interactomes. Database 2019, baz005 (2019).
pubmed: 30715274 pmcid: 6354026 doi: 10.1093/database/baz005
Babu, M. et al. Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489, 585–589 (2012).
pubmed: 22940862 doi: 10.1038/nature11354
Lederkremer, G. Z. & Glickman, M. H. A window of opportunity: timing protein degradation by trimming of sugars and ubiquitins. Trends Biochem. Sci. 30, 297–303 (2005).
pubmed: 15950873 doi: 10.1016/j.tibs.2005.04.010
Ho, B., Baryshnikova, A. & Brown, G. W. Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst. 6, 192–205.e3 (2018).
pubmed: 29361465 doi: 10.1016/j.cels.2017.12.004
Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015).
pubmed: 26496610 doi: 10.1016/j.cell.2015.09.053
Pappenberger, G., McCormack, E. A. & Willison, K. R. Quantitative actin folding reactions using yeast CCT purified via an internal tag in the CCT3/γ subunit. J. Mol. Biol. 360, 484–496 (2006).
pubmed: 16762366 doi: 10.1016/j.jmb.2006.05.003
Vallin, J. & Grantham, J. The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: implications for cancer cell biology. Cell Stress Chaperones 24, 17–27 (2019).
pubmed: 30506376 doi: 10.1007/s12192-018-0949-3
Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).
doi: 10.1137/S003614450342480
Bludau, I. & Aebersold, R. Proteomic and interactomic insights into the molecular basis of cell functional diversity.Nat. Rev. Mol. Cell Bio. 21, 327–340 (2020).
doi: 10.1038/s41580-020-0231-2
Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184, 3022–3040.e28 (2021).
pubmed: 33961781 pmcid: 8165030 doi: 10.1016/j.cell.2021.04.011
Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
pubmed: 10521342 doi: 10.1126/science.286.5439.509
Vidal, M., Cusick, M. E. & Barabási, A.-L. Interactome networks and human disease. Cell 144, 986–998 (2011).
pubmed: 21414488 pmcid: 3102045 doi: 10.1016/j.cell.2011.02.016
Lima-Mendez, G. & van Helden, J. The powerful law of the power law and other myths in network biology. Mol. Biosyst. 5, 1482–93 (2009).
pubmed: 20023717 doi: 10.1039/b908681a
Huttlin, E. L. et al. The BioPlex Network: a systematic exploration of the human interactome. Cell 162, 425–40 (2015).
pubmed: 26186194 pmcid: 4617211 doi: 10.1016/j.cell.2015.06.043
Weill, U. et al. Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nat. Methods 15, 617–622 (2018).
pubmed: 29988094 pmcid: 6076999 doi: 10.1038/s41592-018-0044-9
Ulitsky, I., Shlomi, T., Kupiec, M. & Shamir, R. From E‐MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Mol. Syst. Biol. 4, 209 (2008).
pubmed: 18628749 pmcid: 2516364 doi: 10.1038/msb.2008.42
Qiao, S. et al. Cryo-EM structures of Gid12-bound GID E3 reveal steric blockade as a mechanism inhibiting substrate ubiquitylation. Nat. Commun. 13, 3041 (2022).
pubmed: 35650207 pmcid: 9160049 doi: 10.1038/s41467-022-30803-9
Buschauer, R. et al. The Ccr4–Not complex monitors the translating ribosome for codon optimality. Science 368, eaay6912 (2020).
pubmed: 32299921 pmcid: 8663607 doi: 10.1126/science.aay6912
Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278, 1806–1809 (1997).
pubmed: 9388185 doi: 10.1126/science.278.5344.1806
Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).
pubmed: 19325107 pmcid: 2877488 doi: 10.1126/science.1167983
Wild, R. et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352, 986–990 (2016).
pubmed: 27080106 doi: 10.1126/science.aad9858
Ried, M. K. et al. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis. Nat. Commun. 12, 384 (2021).
pubmed: 33452263 pmcid: 7810988 doi: 10.1038/s41467-020-20681-4
Han, Y., Reyes, A. A., Malik, S. & He, Y. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579, 452–455 (2020).
pubmed: 32188938 pmcid: 7319049 doi: 10.1038/s41586-020-2087-1
Korber, P. & Barbaric, S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res. 42, 10888–10902 (2014).
pubmed: 25190457 pmcid: 4176169 doi: 10.1093/nar/gku784
Gregory, P. D., Schmid, A., Zavari, M., Münsterkötter, M. & Hörz, W. Chromatin remodelling at the PHO8 promoter requires SWI–SNF and SAGA at a step subsequent to activator binding. EMBO J. 18, 6407–6414 (1999).
pubmed: 10562552 pmcid: 1171703 doi: 10.1093/emboj/18.22.6407
Li, X. et al. Control of XPR1-dependent cellular phosphate efflux by InsP
pubmed: 32019887 pmcid: 7035621 doi: 10.1073/pnas.1908830117
Phan, V. T. et al. The RasGAP proteins Ira2 and neurofibromin are negatively regulated by Gpb1 in yeast and ETEA in humans. Mol. Cell. Biol. 30, 2264–2279 (2010).
pubmed: 20160012 pmcid: 2863595 doi: 10.1128/MCB.01450-08
Mason, R. P. et al. Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat. Genet. 45, 1249–1254 (2013).
pubmed: 23974869 pmcid: 4040417 doi: 10.1038/ng.2732
Humphreys, I. R. et al. Computed structures of core eukaryotic protein complexes. Science 374, eabm4805 (2021).
pubmed: 34762488 pmcid: 7612107 doi: 10.1126/science.abm4805
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
pubmed: 34282049 pmcid: 7612213 doi: 10.1126/science.abj8754
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).
pubmed: 36927031 doi: 10.1126/science.ade2574
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at Biorxiv https://doi.org/10.1101/2021.10.04.463034 (2021).
Ahmed, K., Issinger, O.-G. & Szyszka, R. (eds). Protein Kinase CK2 Cellular Function in Normal and Disease States (Springer, 2015).
Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2020).
pmcid: 7778928 doi: 10.1093/nar/gkaa977
Miyauchi, K., Kimura, S. & Suzuki, T. A cyclic form of N
pubmed: 23242255 doi: 10.1038/nchembio.1137
Backstrom, L., Boldi, P., Rosa, M., Ugander, J. & Vigna, S. Four degrees of separation. Preprint at https://doi.org/10.48550/arXiv.1111.4570 (2011).
Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human cellular organization. Science 375, eabi6983 (2022).
pubmed: 35271311 pmcid: 9119736 doi: 10.1126/science.abi6983
Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).
pubmed: 33432242 pmcid: 10548357 doi: 10.1038/s41592-020-01010-5
Yofe, I. et al. One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat. Methods 13, 371–8 (2016).
pubmed: 26928762 pmcid: 4869835 doi: 10.1038/nmeth.3795
Bludau, I. Discovery-versus hypothesis-driven detection of protein–protein interactions and complexes. Int. J. Mol. Sci. 22, 4450 (2021).
pubmed: 33923221 pmcid: 8123138 doi: 10.3390/ijms22094450
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Meier, F. et al. Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteomics 17, 2534–2545 (2018).
pubmed: 30385480 pmcid: 6283298 doi: 10.1074/mcp.TIR118.000900
Kulak, N. A., Geyer, P. E. & Mann, M. Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol. Cell. Proteomics 16, 694–705 (2017).
pubmed: 28126900 pmcid: 5383787 doi: 10.1074/mcp.O116.065136
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Prianichnikov, N. et al. MaxQuant software for ion mobility enhanced shotgun proteomics. Mol. Cell. Proteomics 19, 1058–1069 (2020).
pubmed: 32156793 pmcid: 7261821 doi: 10.1074/mcp.TIR119.001720
Gianetto, Q. G., Couté, Y., Bruley, C. & Burger, T. Uses and misuses of the fudge factor in quantitative discovery proteomics. Proteomics 16, 1955–1960 (2016).
doi: 10.1002/pmic.201600132
Rudolph, J. D. & Cox, J. A network module for the Perseus software for computational proteomics facilitates proteome interaction graph analysis. J. Proteome Res. 18, 2052–2064 (2019).
pubmed: 30931570 pmcid: 6578358 doi: 10.1021/acs.jproteome.8b00927
Kucera, M., Isserlin, R., Arkhangorodsky, A. & Bader, G. D. AutoAnnotate: a Cytoscape app for summarizing networks with semantic annotations. F1000research 5, 1717 (2016).
pubmed: 27830058 pmcid: 5082607 doi: 10.12688/f1000research.9090.1
Oesper, L., Merico, D., Isserlin, R. & Bader, G. D. WordCloud: a Cytoscape plugin to create a visual semantic summary of networks. Source Code Biol. Med. 6, 7 (2011).
pubmed: 21473782 pmcid: 3083346 doi: 10.1186/1751-0473-6-7
Le Mercier, P. et al. SwissBioPics—an interactive library of cell images for the visualization of subcellular location data. Database https://doi.org/10.1093/database/baac026 (2022).
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
pubmed: 19151095 pmcid: 2672624 doi: 10.1093/bioinformatics/btp033
Ren, J. et al. DOG 1.0: illustrator of protein domain structures. Cell Res. 19, 271–273 (2009).
pubmed: 19153597 doi: 10.1038/cr.2009.6
Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).
pubmed: 15334558 doi: 10.1002/yea.1142
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2021).
pmcid: 8728295 doi: 10.1093/nar/gkab1038

Auteurs

André C Michaelis (AC)

Max-Planck Institute of Biochemistry, Martinsried, Germany.

Andreas-David Brunner (AD)

Max-Planck Institute of Biochemistry, Martinsried, Germany.
Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach Riss, Germany.

Maximilian Zwiebel (M)

Max-Planck Institute of Biochemistry, Martinsried, Germany.

Florian Meier (F)

Max-Planck Institute of Biochemistry, Martinsried, Germany.
Functional Proteomics, Jena University Hospital, Jena, Germany.

Maximilian T Strauss (MT)

NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.

Isabell Bludau (I)

Max-Planck Institute of Biochemistry, Martinsried, Germany.

Matthias Mann (M)

Max-Planck Institute of Biochemistry, Martinsried, Germany. mmann@biochem.mpg.de.
NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark. mmann@biochem.mpg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH