CENTRE: a gradient boosting algorithm for Cell-type-specific ENhancer-Target pREdiction.
Journal
Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944
Informations de publication
Date de publication:
01 Nov 2023
01 Nov 2023
Historique:
received:
17
04
2023
revised:
11
10
2023
medline:
24
11
2023
pubmed:
20
11
2023
entrez:
20
11
2023
Statut:
ppublish
Résumé
Identifying target promoters of active enhancers is a crucial step for realizing gene regulation and deciphering phenotypes and diseases. Up to now, several computational methods were developed to predict enhancer gene interactions, but they require either many epigenomic and transcriptomic experimental assays to generate cell-type (CT)-specific predictions or a single experiment applied to a large cohort of CTs to extract correlations between activities of regulatory elements. Thus, inferring CT-specific enhancer gene interactions in unstudied or poorly annotated CTs becomes a laborious and costly task. Here, we aim to infer CT-specific enhancer target interactions, using minimal experimental input. We introduce Cell-specific ENhancer Target pREdiction (CENTRE), a machine learning framework that predicts enhancer target interactions in a CT-specific manner, using only gene expression and ChIP-seq data for three histone modifications for the CT of interest. CENTRE exploits the wealth of available datasets and extracts cell-type agnostic statistics to complement the CT-specific information. CENTRE is thoroughly tested across many datasets and CTs and achieves equivalent or superior performance than existing algorithms that require massive experimental data. CENTRE's open-source code is available at GitHub via https://github.com/slrvv/CENTRE.
Identifiants
pubmed: 37982748
pii: 7429396
doi: 10.1093/bioinformatics/btad687
pmc: PMC10666202
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : German Ministry of Education and Research
ID : 01IS18037G
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press.
Références
PLoS Comput Biol. 2013;9(8):e1003118
pubmed: 23950696
Nat Genet. 2016 May;48(5):488-96
pubmed: 27064255
Nature. 2014 Mar 27;507(7493):455-461
pubmed: 24670763
Nat Methods. 2016 Nov;13(11):919-922
pubmed: 27643841
Nat Genet. 2015 Jun;47(6):598-606
pubmed: 25938943
Mol Cell. 2020 Feb 20;77(4):688-708
pubmed: 32001106
Genome Res. 2013 May;23(5):777-88
pubmed: 23482648
Nature. 2020 Jul;583(7818):699-710
pubmed: 32728249
Genome Res. 2002 Jun;12(6):996-1006
pubmed: 12045153
Genome Biol. 2019 Nov 8;20(1):227
pubmed: 31699133
Nature. 2009 Nov 5;462(7269):58-64
pubmed: 19890323
Nature. 2009 Feb 12;457(7231):854-8
pubmed: 19212405
Cell. 2015 Dec 17;163(7):1611-27
pubmed: 26686651
Trends Cell Biol. 2014 Nov;24(11):695-702
pubmed: 25160912
Nat Genet. 2019 Aug;51(8):1196-1198
pubmed: 31332378
Nat Commun. 2018 Feb 21;9(1):750
pubmed: 29467363
Genome Biol. 2020 Jan 22;21(1):17
pubmed: 31969180
Science. 2009 Oct 9;326(5950):289-93
pubmed: 19815776
Nat Methods. 2017 Jul;14(7):679-685
pubmed: 28604721
Nat Rev Genet. 2013 Jun;14(6):390-403
pubmed: 23657480
Nat Commun. 2016 Jun 02;7:11778
pubmed: 27250503
Nature. 2012 Sep 6;489(7414):75-82
pubmed: 22955617
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Comput Struct Biotechnol J. 2020 Feb 28;18:558-570
pubmed: 32226593
Science. 2018 Sep 28;361(6409):1341-1345
pubmed: 30262496