Single- and combined-phthalate exposures are associated with biological ageing among adults.
Biological ageing
Combined exposure
Phthalates
WQS
Journal
Ecotoxicology and environmental safety
ISSN: 1090-2414
Titre abrégé: Ecotoxicol Environ Saf
Pays: Netherlands
ID NLM: 7805381
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
10
09
2023
revised:
09
11
2023
accepted:
17
11
2023
medline:
4
12
2023
pubmed:
23
11
2023
entrez:
22
11
2023
Statut:
ppublish
Résumé
Previous research has emphasized the effects of lifestyle and genetics on ageing. However, the association between exposure to phthalates, which are extensively used in cosmetics and personal care products, and ageing is still unclear. Data for 4711 subjects from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2010 were incorporated in the present study. The acceleration of the Klemera-Doubal method-biological age (KDM-BA) and phenotypic Age (PhenoAge) were measured by the composite of 13 biomarkers. Multiple-linear and weighted-quantile sum (WQS) regression models were constructed to explore the relationships of single- and combined-phthalate exposures, as indicated by urinary phthalate metabolites, with KDM-BA and PhenoAge. A generalized additive model (GAM) was fitted to explore the potential nonlinear relationships among the above variables. Except for mono-(carboxynonyl), all urinary phthalate metabolites were associated with biological ageing, with correlation coefficients ranging from 0.241 to 0.526; however, mono-ethyl presented a negative correlation. The WQS models revealed mixed effects of combined urinary phthalate metabolites on ageing, with a 0.22-year ((95 % CI) 0.09, 0.32) increase in KDM-BA acceleration and a 0.27-year ((95 % CI) 0.13, 0.37) increase in PhenoAge acceleration for each decile increase in urinary phthalate metabolites. Moreover, MCPP, MEOHP, and MBzP seemed to be the top three phthalates in terms of biological ageing, with weights of 33.3 % and 32.2 %, 29.2 % and 17.2 %, and 21.5 % and 30.1 % in KDM-BA and PhenoAge acceleration, respectively. Single-phthalate exposure was mostly associated with the ageing process, and combined-phthalate exposure presented mixed effects on biological ageing, emphasizing phthalate exposure as a significant risk factor for ageing.
Sections du résumé
BACKGROUND
BACKGROUND
Previous research has emphasized the effects of lifestyle and genetics on ageing. However, the association between exposure to phthalates, which are extensively used in cosmetics and personal care products, and ageing is still unclear.
METHOD
METHODS
Data for 4711 subjects from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2010 were incorporated in the present study. The acceleration of the Klemera-Doubal method-biological age (KDM-BA) and phenotypic Age (PhenoAge) were measured by the composite of 13 biomarkers. Multiple-linear and weighted-quantile sum (WQS) regression models were constructed to explore the relationships of single- and combined-phthalate exposures, as indicated by urinary phthalate metabolites, with KDM-BA and PhenoAge. A generalized additive model (GAM) was fitted to explore the potential nonlinear relationships among the above variables.
RESULTS
RESULTS
Except for mono-(carboxynonyl), all urinary phthalate metabolites were associated with biological ageing, with correlation coefficients ranging from 0.241 to 0.526; however, mono-ethyl presented a negative correlation. The WQS models revealed mixed effects of combined urinary phthalate metabolites on ageing, with a 0.22-year ((95 % CI) 0.09, 0.32) increase in KDM-BA acceleration and a 0.27-year ((95 % CI) 0.13, 0.37) increase in PhenoAge acceleration for each decile increase in urinary phthalate metabolites. Moreover, MCPP, MEOHP, and MBzP seemed to be the top three phthalates in terms of biological ageing, with weights of 33.3 % and 32.2 %, 29.2 % and 17.2 %, and 21.5 % and 30.1 % in KDM-BA and PhenoAge acceleration, respectively.
CONCLUSION
CONCLUSIONS
Single-phthalate exposure was mostly associated with the ageing process, and combined-phthalate exposure presented mixed effects on biological ageing, emphasizing phthalate exposure as a significant risk factor for ageing.
Identifiants
pubmed: 37992641
pii: S0147-6513(23)01219-8
doi: 10.1016/j.ecoenv.2023.115715
pii:
doi:
Substances chimiques
phthalic acid
6O7F7IX66E
Environmental Pollutants
0
Phthalic Acids
0
Cosmetics
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
115715Informations de copyright
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.