Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle.
Cell-cell fusion
Fusogen
Muscle progenitor cell
Myogenesis
Phospholipid scrambling
Satellite cell
Skeletal muscle
Journal
Results and problems in cell differentiation
ISSN: 0080-1844
Titre abrégé: Results Probl Cell Differ
Pays: Germany
ID NLM: 0173555
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
27
11
2023
pubmed:
24
11
2023
entrez:
23
11
2023
Statut:
ppublish
Résumé
Skeletal muscle possesses a resident, multipotent stem cell population that is essential for its repair and maintenance throughout life. Here I highlight the role of this stem cell population in muscle repair and regeneration and review the genetic control of the process; the mechanistic steps of activation, migration, recognition, adhesion, and fusion of these cells; and discuss the novel recognition of the membrane signaling that coordinates myogenic cell-cell fusion, as well as the identification of a two-part fusogen system that facilitates it.
Identifiants
pubmed: 37996682
doi: 10.1007/978-3-031-37936-9_13
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
257-279Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Abmayr SM, Pavlath GK (2012) Myoblast fusion: lessons from flies and mice. Development 139(4):641–656. https://doi.org/10.1242/dev.068353 . PubMed PMID: 22274696; PMCID: PMC3265056
doi: 10.1242/dev.068353
pubmed: 22274696
pmcid: 3265056
Abramovici H, Gee SH (2007) Morphological changes and spatial regulation of diacylglycerol kinase-zeta, syntrophins, and Rac1 during myoblast fusion. Cell Motil Cytoskeleton 64(7):549–567. https://doi.org/10.1002/cm.20204 . PubMed PMID: 17410543
doi: 10.1002/cm.20204
pubmed: 17410543
Adler RR, Ng AK, Rote NS (1995) Monoclonal antiphosphatidylserine antibody inhibits intercellular fusion of the choriocarcinoma line, JAR. Biol Reprod 53(4):905–910. PubMed PMID: 8547487
doi: 10.1095/biolreprod53.4.905
pubmed: 8547487
Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138(2):311–315. https://doi.org/10.1002/jcp.1041380213 . PubMed PMID: 2918032
doi: 10.1002/jcp.1041380213
pubmed: 2918032
Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165(2):307–312. https://doi.org/10.1002/jcp.1041650211 . PubMed PMID: 7593208
doi: 10.1002/jcp.1041650211
pubmed: 7593208
Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11(5):1859–1874. PubMed PMID: 10793157; PMCID: PMC14889
doi: 10.1091/mbc.11.5.1859
pubmed: 10793157
pmcid: 14889
Andrews NW, Almeida PE, Corrotte M (2014) Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol 24(12):734–742. https://doi.org/10.1016/j.tcb.2014.07.008 . PubMed PMID: 25150593; PMCID: PMC4252702
doi: 10.1016/j.tcb.2014.07.008
pubmed: 25150593
pmcid: 4252702
Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423(6936):168–172. https://doi.org/10.1038/nature01573 . PubMed PMID: 12736685
doi: 10.1038/nature01573
pubmed: 12736685
Bi GQ, Alderton JM, Steinhardt RA (1995) Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol 131(6 Pt 2):1747–1758. PubMed PMID: 8557742; PMCID: PMC2120667
doi: 10.1083/jcb.131.6.1747
pubmed: 8557742
Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR, Shelton JM, Sanchez-Ortiz E, Bassel-Duby R, Olson EN (2017) Control of muscle formation by the fusogenic micropeptide myomixer. Science 356(6335):323–327. https://doi.org/10.1126/science.aam9361 . Epub 2017/04/08. PubMed PMID: 28386024; PMCID: PMC5502127
doi: 10.1126/science.aam9361
pubmed: 28386024
pmcid: 5502127
Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208(4):505–515. https://doi.org/10.1002/(SICI)1097-0177(199704)208:4<505::AID-AJA6>3.0.CO;2-M . Epub 1997/04/01. PubMed PMID: 9097022
doi: 10.1002/(SICI)1097-0177(199704)208:4<505::AID-AJA6>3.0.CO;2-M
pubmed: 9097022
Bober E, Franz T, Arnold HH, Gruss P, Tremblay P (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120(3):603–612. PubMed PMID: 8162858
doi: 10.1242/dev.120.3.603
pubmed: 8162858
Bolduc V, Marlow G, Boycott KM, Saleki K, Inoue H, Kroon J, Itakura M, Robitaille Y, Parent L, Baas F, Mizuta K, Kamata N, Richard I, Linssen WH, Mahjneh I, de Visser M, Bashir R, Brais B (2010) Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet 86(2):213–221. https://doi.org/10.1016/j.ajhg.2009.12.013 . PubMed PMID: 20096397; PMCID: 2820170
doi: 10.1016/j.ajhg.2009.12.013
pubmed: 20096397
pmcid: 2820170
Boonstra K, Bloemberg D, Quadrilatero J (2018) Caspase-2 is required for skeletal muscle differentiation and myogenesis. Biochim Biophys Acta 1865(1):95–104. https://doi.org/10.1016/j.bbamcr.2017.07.016 . PubMed PMID: 28765049
doi: 10.1016/j.bbamcr.2017.07.016
Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516(7530):207–212. https://doi.org/10.1038/nature13984 . PubMed PMID: 25383531
doi: 10.1038/nature13984
pubmed: 25383531
Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko JK, Lin P, Thornton A, Zhao X, Pan Z, Komazaki S, Brotto M, Takeshima H, Ma J (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11(1):56–64. https://doi.org/10.1038/ncb1812 . PubMed PMID: 19043407; PMCID: PMC2990407
doi: 10.1038/ncb1812
pubmed: 19043407
Cai C, Lin P, Zhu H, Ko JK, Hwang M, Tan T, Pan Z, Korichneva I, Ma J (2015) Zinc binding to MG53 protein facilitates repair of injury to cell membranes. J Biol Chem 290(22):13830–13839. https://doi.org/10.1074/jbc.M114.620690 . PubMed PMID: 25869134; PMCID: PMC4447959
doi: 10.1074/jbc.M114.620690
pubmed: 25869134
pmcid: 4447959
Calderon JC, Bolanos P, Caputo C (2014) The excitation-contraction coupling mechanism in skeletal muscle. Biophys Rev 6(1):133–160. https://doi.org/10.1007/s12551-013-0135-x . PubMed PMID: 28509964; PMCID: PMC5425715
doi: 10.1007/s12551-013-0135-x
pubmed: 28509964
pmcid: 5425715
Cantini M, Massimino ML, Rapizzi E, Rossini K, Catani C, Dalla Libera L, Carraro U (1995) Human satellite cell proliferation in vitro is regulated by autocrine secretion of IL-6 stimulated by a soluble factor(s) released by activated monocytes. Biochem Biophys Res Commun 216(1):49–53. PubMed PMID: 7488123
doi: 10.1006/bbrc.1995.2590
pubmed: 7488123
Chakrabarti S, Kobayashi KS, Flavell RA, Marks CB, Miyake K, Liston DR, Fowler KT, Gorelick FS, Andrews NW (2003) Impaired membrane resealing and autoimmune myositis in synaptotagmin VII-deficient mice. J Cell Biol 162(4):543–549. https://doi.org/10.1083/jcb.200305131 . PubMed PMID: 12925704; PMCID: PMC2173791
doi: 10.1083/jcb.200305131
pubmed: 12925704
pmcid: 2173791
Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340. https://doi.org/10.1038/nrm3591 . PubMed PMID: 23698583; PMCID: PMC3808888
doi: 10.1038/nrm3591
pubmed: 23698583
Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301. https://doi.org/10.1016/j.cell.2005.05.010 . PubMed PMID: 16051152
doi: 10.1016/j.cell.2005.05.010
pubmed: 16051152
Cooper ST, McNeil PL (2015) Membrane repair: mechanisms and pathophysiology. Physiol Rev 95(4):1205–1240. https://doi.org/10.1152/physrev.00037.2014 . PubMed PMID: 26336031; PMCID: PMC4600952
doi: 10.1152/physrev.00037.2014
pubmed: 26336031
pmcid: 4600952
Corbalan-Garcia S, Gomez-Fernandez JC (2014) Signaling through C2 domains: more than one lipid target. Biochim Biophys Acta 1838(6):1536–1547. https://doi.org/10.1016/j.bbamem.2014.01.008 . Epub 2014/01/21. PubMed PMID: 24440424
doi: 10.1016/j.bbamem.2014.01.008
pubmed: 24440424
Corona BT, Garg K, Ward CL, McDaniel JS, Walters TJ, Rathbone CR (2013) Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am J Physiol Cell Physiol 305(7):C761–C775. https://doi.org/10.1152/ajpcell.00189.2013 . PubMed PMID: 23885064
doi: 10.1152/ajpcell.00189.2013
pubmed: 23885064
Davie JK, Cho JH, Meadows E, Flynn JM, Knapp JR, Klein WH (2007) Target gene selectivity of the myogenic basic helix-loop-helix transcription factor myogenin in embryonic muscle. Dev Biol 311(2):650–664. https://doi.org/10.1016/j.ydbio.2007.08.014 . PubMed PMID: 17904117
doi: 10.1016/j.ydbio.2007.08.014
pubmed: 17904117
De Gasperi R, Hamidi S, Harlow LM, Ksiezak-Reding H, Bauman WA, Cardozo CP (2017) Denervation-related alterations and biological activity of miRNAs contained in exosomes released by skeletal muscle fibers. Sci Rep 7(1):12888. https://doi.org/10.1038/s41598-017-13105-9 . PubMed PMID: 29038428; PMCID: PMC5643439
doi: 10.1038/s41598-017-13105-9
pubmed: 29038428
pmcid: 5643439
Defour A, Medikayala S, Van der Meulen JH, Hogarth MW, Holdreith N, Malatras A, Duddy W, Boehler J, Nagaraju K, Jaiswal JK (2017) Annexin A2 links poor myofiber repair with inflammation and adipogenic replacement of the injured muscle. Hum Mol Genet 26(11):1979–1991. https://doi.org/10.1093/hmg/ddx065 . PubMed PMID: 28334824
doi: 10.1093/hmg/ddx065
pubmed: 28334824
pmcid: 6075559
Detrait E, Eddleman CS, Yoo S, Fukuda M, Nguyen MP, Bittner GD, Fishman HM (2000) Axolemmal repair requires proteins that mediate synaptic vesicle fusion. J Neurobiol 44(4):382–391. PubMed PMID: 10945894
doi: 10.1002/1097-4695(20000915)44:4<382::AID-NEU2>3.0.CO;2-Q
pubmed: 10945894
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5(3):1027–1059. https://doi.org/10.1002/cphy.c140068 . Epub 2015/07/04. PubMed PMID: 26140708
doi: 10.1002/cphy.c140068
pubmed: 26140708
Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci U S A 99(17):11025–11030. https://doi.org/10.1073/pnas.162172899 . PubMed PMID: 12177420; PMCID: PMC123204
doi: 10.1073/pnas.162172899
pubmed: 12177420
pmcid: 123204
Foltz SJ, Cui YY, Choo HJ, Hartzell HC (2021) ANO5 ensures trafficking of annexins in wounded myofibers. J Cell Biol 220(3). https://doi.org/10.1083/jcb.202007059 . Epub 2021/01/27. PubMed PMID: 33496727; PMCID: PMC7844426
Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, Record M, Geloen A, Lefai E, Vidal H, Coute Y, Rome S (2014) Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS One 9(1):e84153. https://doi.org/10.1371/journal.pone.0084153 . PubMed PMID: 24392111; PMCID: PMC3879278
doi: 10.1371/journal.pone.0084153
pubmed: 24392111
pmcid: 3879278
Gamage DG, Melikov K, Munoz-Tello P, Wherley TJ, Focke LC, Leikina E, Huffman E, Diao J, Kojetin DJ, Prasad V, Chernomordik LV, Millay DP (2022) Phosphatidylserine orchestrates Myomerger membrane insertions to drive myoblast fusion. Proc Natl Acad Sci U S A 119(38):e2202490119. https://doi.org/10.1073/pnas.2202490119 . Epub 2022/09/13. PubMed PMID: 36095199; PMCID: PMC9499509
doi: 10.1073/pnas.2202490119
pubmed: 36095199
pmcid: 9499509
Geisbrecht ER, Haralalka S, Swanson SK, Florens L, Washburn MP, Abmayr SM (2008) Drosophila ELMO/CED-12 interacts with myoblast city to direct myoblast fusion and ommatidial organization. Dev Biol 314(1):137–149. https://doi.org/10.1016/j.ydbio.2007.11.022 . PubMed PMID: 18163987; PMCID: PMC2697615
doi: 10.1016/j.ydbio.2007.11.022
pubmed: 18163987
Glover L, Brown RH Jr (2007) Dysferlin in membrane trafficking and patch repair. Traffic 8(7):785–794. https://doi.org/10.1111/j.1600-0854.2007.00573.x . PubMed PMID: 17547707
doi: 10.1111/j.1600-0854.2007.00573.x
pubmed: 17547707
Golani G, Leikina E, Melikov K, Whitlock JM, Gamage DG, Luoma-Overstreet G, Millay DP, Kozlov MM, Chernomordik LV (2021) Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion diaphragm. Nat Commun 12(1):495. https://doi.org/10.1038/s41467-020-20804-x . Epub 2021/01/23. PubMed PMID: 33479215; PMCID: PMC7820291
doi: 10.1038/s41467-020-20804-x
pubmed: 33479215
pmcid: 7820291
Gozen I, Dommersnes P (2014) Pore dynamics in lipid membranes. Eur Phys J Spec Top 223(9):1813–1829
doi: 10.1140/epjst/e2014-02228-5
Griffin DA, Johnson RW, Whitlock JM, Pozsgai ER, Heller KN, Grose WE, Arnold WD, Sahenk Z, Hartzell HC, Rodino-Klapac LR (2016) Defective membrane fusion and repair in Anoctamin5-deficient muscular dystrophy. Hum Mol Genet 25:1900. https://doi.org/10.1093/hmg/ddw063 . Epub 2016/02/26. PubMed PMID: 26911675
doi: 10.1093/hmg/ddw063
pubmed: 26911675
pmcid: 5062581
Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435(7044):954–958. https://doi.org/10.1038/nature03572 . PubMed PMID: 15843802
doi: 10.1038/nature03572
pubmed: 15843802
Gurevich DB, Nguyen PD, Siegel AL, Ehrlich OV, Sonntag C, Phan JM, Berger S, Ratnayake D, Hersey L, Berger J, Verkade H, Hall TE, Currie PD (2016) Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo. Science 353(6295):aad9969. https://doi.org/10.1126/science.aad9969 . PubMed PMID: 27198673
doi: 10.1126/science.aad9969
pubmed: 27198673
Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267(5200):1018–1021. PubMed PMID: 7863327
doi: 10.1126/science.7863327
pubmed: 7863327
Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19(10):514–522. https://doi.org/10.1016/j.tcb.2009.07.005 . PubMed PMID: 19733078
doi: 10.1016/j.tcb.2009.07.005
pubmed: 19733078
Hicks D, Sarkozy A, Muelas N, Koehler K, Huebner A, Hudson G, Chinnery PF, Barresi R, Eagle M, Polvikoski T, Bailey G, Miller J, Radunovic A, Hughes PJ, Roberts R, Krause S, Walter MC, Laval SH, Straub V, Lochmuller H, Bushby K (2011) A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy. Brain 134(Pt 1):171–182. https://doi.org/10.1093/brain/awq294 . PubMed PMID: 21186264; PMCID: 4038512
doi: 10.1093/brain/awq294
pubmed: 21186264
Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S, Call JA, Klibanov AL, Yan Z, Mandell JW, Ravichandran KS (2013) Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497(7448):263–267. https://doi.org/10.1038/nature12135 . PubMed PMID: 23615608; PMCID: PMC3773542
doi: 10.1038/nature12135
pubmed: 23615608
pmcid: 3773542
Hollenberg SM, Cheng PF, Weintraub H (1993) Use of a conditional MyoD transcription factor in studies of MyoD trans-activation and muscle determination. Proc Natl Acad Sci U S A. 90(17):8028–8032. PubMed PMID: 8396258; PMCID: PMC47281
doi: 10.1073/pnas.90.17.8028
pubmed: 8396258
pmcid: 47281
Hollnagel A, Grund C, Franke WW, Arnold HH (2002) The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol 22(13):4760–4770. PubMed PMID: 12052883; PMCID: PMC133893
doi: 10.1128/MCB.22.13.4760-4770.2002
pubmed: 12052883
pmcid: 133893
Jeong J, Conboy IM (2011) Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochem Biophys Res Commun 414(1):9–13. https://doi.org/10.1016/j.bbrc.2011.08.128 . PubMed PMID: 21910971; PMCID: PMC3195849
doi: 10.1016/j.bbrc.2011.08.128
pubmed: 21910971
pmcid: 3195849
Johnson CP, Chapman ER (2010) Otoferlin is a calcium sensor that directly regulates SNARE-mediated membrane fusion. J Cell Biol 191(1):187–197. https://doi.org/10.1083/jcb.201002089 . PubMed PMID: 20921140; PMCID: PMC2953437
doi: 10.1083/jcb.201002089
pubmed: 20921140
pmcid: 2953437
Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010. https://doi.org/10.1016/j.cell.2007.03.044 . PubMed PMID: 17540178; PMCID: PMC2718740
doi: 10.1016/j.cell.2007.03.044
pubmed: 17540178
pmcid: 2718740
Lafuste P, Sonnet C, Chazaud B, Dreyfus PA, Gherardi RK, Wewer UM, Authier FJ (2005) ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation. Mol Biol Cell 16(2):861–870. https://doi.org/10.1091/mbc.E04-03-0226 . PubMed PMID: 15574885; PMCID: PMC545917
doi: 10.1091/mbc.E04-03-0226
pubmed: 15574885
pmcid: 545917
Laurin M, Fradet N, Blangy A, Hall A, Vuori K, Cote JF (2008) The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proc Natl Acad Sci U S A 105(40):15446–15451. https://doi.org/10.1073/pnas.0805546105 . PubMed PMID: 18820033; PMCID: PMC2563090
doi: 10.1073/pnas.0805546105
pubmed: 18820033
pmcid: 2563090
Lechner C, Zahalka MA, Giot JF, Moller NP, Ullrich A (1996) ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci U S A 93(9):4355–4359. Epub 1996/04/30. PubMed PMID: 8633070; PMCID: PMC39541
doi: 10.1073/pnas.93.9.4355
pubmed: 8633070
pmcid: 39541
Leikina E, Melikov K, Sanyal S, Verma SK, Eun B, Gebert C, Pfeifer K, Lizunov VA, Kozlov MM, Chernomordik LV (2013) Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. J Cell Biol 200(1):109–123. https://doi.org/10.1083/jcb.201207012 . Epub 2013/01/02. PubMed PMID: 23277424; PMCID: PMC3542790
doi: 10.1083/jcb.201207012
pubmed: 23277424
pmcid: 3542790
Leikina E, Defour A, Melikov K, Van der Meulen JH, Nagaraju K, Bhuvanendran S, Gebert C, Pfeifer K, Chernomordik LV, Jaiswal JK (2015) Annexin A1 deficiency does not affect myofiber repair but delays regeneration of injured muscles. Sci Rep 5:18246. https://doi.org/10.1038/srep18246 . PubMed PMID: 26667898; PMCID: PMC4678367
doi: 10.1038/srep18246
pubmed: 26667898
pmcid: 4678367
Leikina E, Gamage DG, Prasad V, Goykhberg J, Crowe M, Diao J, Kozlov MM, Chernomordik LV, Millay DP (2018) Myomaker and myomerger work independently to control distinct steps of membrane remodeling during myoblast fusion. Dev Cell 46(6):767–780 e7. https://doi.org/10.1016/j.devcel.2018.08.006 . Epub 2018/09/11. PubMed PMID: 30197239; PMCID: PMC6203449
doi: 10.1016/j.devcel.2018.08.006
pubmed: 30197239
pmcid: 6203449
Lennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT, Brown RH Jr (2003) Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J Biol Chem 278(50):50466–50473. https://doi.org/10.1074/jbc.M307247200 . PubMed PMID: 14506282
doi: 10.1074/jbc.M307247200
pubmed: 14506282
Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646. https://doi.org/10.1242/dev.067595 . PubMed PMID: 21828092; PMCID: PMC3152922
doi: 10.1242/dev.067595
pubmed: 21828092
pmcid: 3152922
Liu Y, Schneider MF (2014) FGF2 activates TRPC and ca(2+) signaling leading to satellite cell activation. Front Physiol 5:38. https://doi.org/10.3389/fphys.2014.00038 . PubMed PMID: 24575047; PMCID: PMC3920331
doi: 10.3389/fphys.2014.00038
pubmed: 24575047
pmcid: 3920331
Madison RD, McGee C, Rawson R, Robinson GA (2014) Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34). J Extracell Vesicles 3:3. https://doi.org/10.3402/jev.v3.22865 . PubMed PMID: 24563732; PMCID: PMC3930942
doi: 10.3402/jev.v3.22865
Malvezzi M, Chalat M, Janjusevic R, Picollo A, Terashima H, Menon AK, Accardi A (2013) Ca2+−dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat Commun 4:2367. https://doi.org/10.1038/ncomms3367 . PubMed PMID: 23996062; PMCID: PMC3970400
doi: 10.1038/ncomms3367
pubmed: 23996062
Mansouri A, Stoykova A, Torres M, Gruss P (1996) Dysgenesis of cephalic neural crest derivatives in Pax7−/− mutant mice. Development 122(3):831–838. PubMed PMID: 8631261
doi: 10.1242/dev.122.3.831
pubmed: 8631261
Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495. PubMed PMID: 13768451; PMCID: PMC2225012
doi: 10.1083/jcb.9.2.493
pubmed: 13768451
pmcid: 2225012
McNeil PL, Khakee R (1992) Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol 140(5):1097–1109. PubMed PMID: 1374591; PMCID: PMC1886518
pubmed: 1374591
pmcid: 1886518
McNeil PL, Steinhardt RA (1997) Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol 137(1):1–4. PubMed PMID: 9105031; PMCID: PMC2139853
doi: 10.1083/jcb.137.1.1
pubmed: 9105031
pmcid: 2139853
Millay DP, O’Rourke JR, Sutherland LB, Bezprozvannaya S, Shelton JM, Bassel-Duby R, Olson EN (2013) Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499(7458):301–305. https://doi.org/10.1038/nature12343 . Epub 2013/07/23. PubMed PMID: 23868259; PMCID: PMC3739301
doi: 10.1038/nature12343
pubmed: 23868259
pmcid: 3739301
Miyake K, McNeil PL (1995) Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J Cell Biol 131(6 Pt 2):1737–1745. PubMed PMID: 8557741; PMCID: PMC2120668
doi: 10.1083/jcb.131.6.1737
pubmed: 8557741
Moore CA, Parkin CA, Bidet Y, Ingham PW (2007) A role for the myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion. Development 134(17):3145–3153. https://doi.org/10.1242/dev.001214 . PubMed PMID: 17670792
doi: 10.1242/dev.001214
pubmed: 17670792
Mukai A, Kurisaki T, Sato SB, Kobayashi T, Kondoh G, Hashimoto N (2009) Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells. Exp Cell Res 315(17):3052–3063. https://doi.org/10.1016/j.yexcr.2009.07.010 . PubMed PMID: 19615358
doi: 10.1016/j.yexcr.2009.07.010
pubmed: 19615358
Murphy DA, Courtneidge SA (2011) The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12(7):413–426. https://doi.org/10.1038/nrm3141 . PubMed PMID: 21697900; PMCID: PMC3423958
doi: 10.1038/nrm3141
pubmed: 21697900
pmcid: 3423958
Murphy C, Withrow J, Hunter M, Liu Y, Tang YL, Fulzele S, Hamrick MW (2018) Emerging role of extracellular vesicles in musculoskeletal diseases. Mol Asp Med 60:123–128. https://doi.org/10.1016/j.mam.2017.09.006 . PubMed PMID: 28965750; PMCID: PMC5856577
doi: 10.1016/j.mam.2017.09.006
Murray TV, McMahon JM, Howley BA, Stanley A, Ritter T, Mohr A, Zwacka R, Fearnhead HO (2008) A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci 121(Pt 22):3786–3793. https://doi.org/10.1242/jcs.024547 . PubMed PMID: 18957517
doi: 10.1242/jcs.024547
pubmed: 18957517
Neuhaus P, Oustanina S, Loch T, Kruger M, Bober E, Dono R, Zeller R, Braun T (2003) Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Mol Cell Biol 23(17):6037–6048. PubMed PMID: 12917328; PMCID: PMC180975
doi: 10.1128/MCB.23.17.6037-6048.2003
pubmed: 12917328
pmcid: 180975
Ornatsky OI, Cox DM, Tangirala P, Andreucci JJ, Quinn ZA, Wrana JL, Prywes R, Yu YT, McDermott JC (1999) Post-translational control of the MEF2A transcriptional regulatory protein. Nucleic Acids Res 27(13):2646–2654. Epub 1999/06/22. PubMed PMID: 10373581; PMCID: PMC148473
doi: 10.1093/nar/27.13.2646
pubmed: 10373581
pmcid: 148473
Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430–434. https://doi.org/10.1038/nature06329 . PubMed PMID: 17960134
doi: 10.1038/nature06329
pubmed: 17960134
Park SY, Yun Y, Lim JS, Kim MJ, Kim SY, Kim JE, Kim IS (2016) Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat Commun 7:10871. https://doi.org/10.1038/ncomms10871 . PubMed PMID: 26972991; PMCID: PMC4793076
doi: 10.1038/ncomms10871
pubmed: 26972991
pmcid: 4793076
Proctor DN, O’Brien PC, Atkinson EJ, Nair KS (1999) Comparison of techniques to estimate total body skeletal muscle mass in people of different age groups. Am J Phys 277(3 Pt 1):E489–E495. PubMed PMID: 10484361
Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ, Prasad V, Millay DP (2017) Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun 8:15665. https://doi.org/10.1038/ncomms15665 . Epub 2017/06/02. PubMed PMID: 28569755; PMCID: PMC5461499
doi: 10.1038/ncomms15665
pubmed: 28569755
pmcid: 5461499
Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by ca(2+)-regulated exocytosis of lysosomes. Cell 106(2):157–169. PubMed PMID: 11511344
doi: 10.1016/S0092-8674(01)00421-4
pubmed: 11511344
Reznik M (1969) Thymidine-3H uptake by satellite cells of regenerating skeletal muscle. J Cell Biol 40(2):568–571. PubMed PMID: 5812478; PMCID: PMC2107616
doi: 10.1083/jcb.40.2.568
pubmed: 5812478
pmcid: 2107616
Riddell MR, Winkler-Lowen B, Jiang Y, Davidge ST, Guilbert LJ (2013) Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts. PLoS One 8(12):e81273. https://doi.org/10.1371/journal.pone.0081273 . PubMed PMID: 24339915; PMCID: PMC3855289
doi: 10.1371/journal.pone.0081273
pubmed: 24339915
pmcid: 3855289
Rochlin K, Yu S, Roy S, Baylies MK (2010) Myoblast fusion: when it takes more to make one. Dev Biol 341(1):66–83. https://doi.org/10.1016/j.ydbio.2009.10.024 . PubMed PMID: 19932206; PMCID: PMC2854170
doi: 10.1016/j.ydbio.2009.10.024
pubmed: 19932206
Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31(10):773–779. https://doi.org/10.1007/BF02634119 . PubMed PMID: 8564066
doi: 10.1007/BF02634119
pubmed: 8564066
Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656. https://doi.org/10.1242/dev.067587 . PubMed PMID: 21828093
doi: 10.1242/dev.067587
pubmed: 21828093
Schwander M, Leu M, Stumm M, Dorchies OM, Ruegg UT, Schittny J, Muller U (2003) Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell 4(5):673–685. PubMed PMID: 12737803
doi: 10.1016/S1534-5807(03)00118-7
pubmed: 12737803
Segal D, Dhanyasi N, Schejter ED, Shilo BZ (2016) Adhesion and fusion of muscle cells are promoted by Filopodia. Dev Cell 38(3):291–304. https://doi.org/10.1016/j.devcel.2016.07.010 . PubMed PMID: 27505416
doi: 10.1016/j.devcel.2016.07.010
pubmed: 27505416
Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, Brack AS (2010) Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6(2):117–129. https://doi.org/10.1016/j.stem.2009.12.015 . PubMed PMID: 20144785; PMCID: PMC2846417
doi: 10.1016/j.stem.2009.12.015
pubmed: 20144785
pmcid: 2846417
Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DD (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27(10):2527–2538. https://doi.org/10.1002/stem.178 . PubMed PMID: 19609936; PMCID: PMC2798070
doi: 10.1002/stem.178
pubmed: 19609936
Snow MH (1977) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat Rec 188(2):201–217. https://doi.org/10.1002/ar.1091880206 . PubMed PMID: 869238
doi: 10.1002/ar.1091880206
pubmed: 869238
Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):1219–1227. https://doi.org/10.1016/j.cell.2013.05.002 . PubMed PMID: 23746839; PMCID: PMC4394608
doi: 10.1016/j.cell.2013.05.002
pubmed: 23746839
pmcid: 4394608
Stadler B, Blattler TM, Franco-Obregon A (2010) Time-lapse imaging of in vitro myogenesis using atomic force microscopy. J Microsc 237(1):63–69. https://doi.org/10.1111/j.1365-2818.2009.03302.x . PubMed PMID: 20055919
doi: 10.1111/j.1365-2818.2009.03302.x
pubmed: 20055919
Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89(1):127–138. PubMed PMID: 9094721
doi: 10.1016/S0092-8674(00)80189-0
pubmed: 9094721
Tatsumi R (2010) Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Anim Sci J 81(1):11–20. https://doi.org/10.1111/j.1740-0929.2009.00712.x . PubMed PMID: 20163667
doi: 10.1111/j.1740-0929.2009.00712.x
pubmed: 20163667
Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194(1):114–128. https://doi.org/10.1006/dbio.1997.8803 . PubMed PMID: 9473336
doi: 10.1006/dbio.1997.8803
pubmed: 9473336
Terasaki M, Miyake K, McNeil PL (1997) Large plasma membrane disruptions are rapidly resealed by Ca2+−dependent vesicle-vesicle fusion events. J Cell Biol 139(1):63–74. PubMed PMID: 9314529; PMCID: PMC2139822
doi: 10.1083/jcb.139.1.63
pubmed: 9314529
pmcid: 2139822
Togo T, Alderton JM, Bi GQ, Steinhardt RA (1999) The mechanism of facilitated cell membrane resealing. J Cell Sci 112(Pt 5):719–731. PubMed PMID: 9973606
doi: 10.1242/jcs.112.5.719
pubmed: 9973606
Tsuchiya M, Hara Y, Okuda M, Itoh K, Nishioka R, Shiomi A, Nagao K, Mori M, Mori Y, Ikenouchi J, Suzuki R, Tanaka M, Ohwada T, Aoki J, Kanagawa M, Toda T, Nagata Y, Matsuda R, Takayama Y, Tominaga M, Umeda M (2018) Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat Commun 9(1):2049. https://doi.org/10.1038/s41467-018-04436-w . Epub 2018/05/26. PubMed PMID: 29799007; PMCID: PMC5967302
doi: 10.1038/s41467-018-04436-w
pubmed: 29799007
pmcid: 5967302
Van den Eijnde SM, Boshart L, Reutelingsperger CP, De Zeeuw CI, Vermeij-Keers C (1997) Phosphatidylserine plasma membrane asymmetry in vivo: a pancellular phenomenon which alters during apoptosis. Cell Death Differ 4(4):311–316. https://doi.org/10.1038/sj.cdd.4400241 . PubMed PMID: 16465246
doi: 10.1038/sj.cdd.4400241
pubmed: 16465246
van den Eijnde SM, van den Hoff MJ, Reutelingsperger CP, van Heerde WL, Henfling ME, Vermeij-Keers C, Schutte B, Borgers M, Ramaekers FC (2001) Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J Cell Sci 114(Pt 20):3631–3642. PubMed PMID: 11707515
doi: 10.1242/jcs.114.20.3631
pubmed: 11707515
van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228. https://doi.org/10.1038/nrm.2017.125 . PubMed PMID: 29339798
doi: 10.1038/nrm.2017.125
pubmed: 29339798
Vasyutina E, Martarelli B, Brakebusch C, Wende H, Birchmeier C (2009) The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse. Proc Natl Acad Sci U S A 106(22):8935–8940. https://doi.org/10.1073/pnas.0902501106 . PubMed PMID: 19443691; PMCID: PMC2682539
doi: 10.1073/pnas.0902501106
pubmed: 19443691
pmcid: 2682539
Verma SK, Leikina E, Melikov K, Gebert C, Kram V, Young MF, Uygur B, Chernomordik LV (2018) Cell-surface phosphatidylserine regulates osteoclast precursor fusion. J Biol Chem 293(1):254–270. https://doi.org/10.1074/jbc.M117.809681 . Epub 2017/11/05. PubMed PMID: 29101233; PMCID: PMC5766907
doi: 10.1074/jbc.M117.809681
pubmed: 29101233
Wang X, Wu H, Zhang Z, Liu S, Yang J, Chen X, Fan M, Wang X (2008) Effects of interleukin-6, leukemia inhibitory factor, and ciliary neurotrophic factor on the proliferation and differentiation of adult human myoblasts. Cell Mol Neurobiol 28(1):113–124. https://doi.org/10.1007/s10571-007-9247-9 . PubMed PMID: 18240017
doi: 10.1007/s10571-007-9247-9
pubmed: 18240017
White RB, Bierinx AS, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10:21. https://doi.org/10.1186/1471-213X-10-21 . PubMed PMID: 20175910; PMCID: PMC2836990
doi: 10.1186/1471-213X-10-21
pubmed: 20175910
pmcid: 2836990
Whitham M, Parker BL, Friedrichsen M, Hingst JR, Hjorth M, Hughes WE, Egan CL, Cron L, Watt KI, Kuchel RP, Jayasooriah N, Estevez E, Petzold T, Suter CM, Gregorevic P, Kiens B, Richter EA, James DE, Wojtaszewski JFP, Febbraio MA (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 27(1):237–251 e4. https://doi.org/10.1016/j.cmet.2017.12.001 . PubMed PMID: 29320704
doi: 10.1016/j.cmet.2017.12.001
pubmed: 29320704
Whitlock JM, Chernomordik LV (2021) Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 296:100411. https://doi.org/10.1016/j.jbc.2021.100411 . Epub 2021/02/14. PubMed PMID: 33581114; PMCID: PMC8005811
doi: 10.1016/j.jbc.2021.100411
pubmed: 33581114
pmcid: 8005811
Whitlock JH, Hartzell HC (2017) Anoctamins/TMEM16 proteins: chloride channels flirting with lipids and extracellular vesicles. Annu Rev Physiol 79:79. https://doi.org/10.1146/annurev-physiol-022516-034031
doi: 10.1146/annurev-physiol-022516-034031
Yang D, Morris SF, Sigurdson L (1998) The sartorius muscle: anatomic considerations for reconstructive surgeons. Surg Radiol Anat 20(5):307–310. PubMed PMID: 9894308
doi: 10.1007/BF01630610
pubmed: 9894308
Yoon S, Molloy MJ, Wu MP, Cowan DB, Gussoni E (2007) C6ORF32 is upregulated during muscle cell differentiation and induces the formation of cellular filopodia. Dev Biol 301(1):70–81. https://doi.org/10.1016/j.ydbio.2006.11.002 . PubMed PMID: 17150207; PMCID: PMC1779902
doi: 10.1016/j.ydbio.2006.11.002
pubmed: 17150207
Yu K, Whitlock JM, Lee K, Ortlund EA, Cui YY, Hartzell HC (2015) Identification of a lipid scrambling domain in ANO6/TMEM16F. Elife 4:e06901. https://doi.org/10.7554/eLife.06901 . Epub 2015/06/10. PubMed PMID: 26057829; PMCID: 4477620
doi: 10.7554/eLife.06901
pubmed: 26057829
pmcid: 4477620
Zaitseva E, Zaitsev E, Melikov K, Arakelyan A, Marin M, Villasmil R, Margolis LB, Melikyan GB, Chernomordik LV (2017) Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe 22(1):99–110 e7. https://doi.org/10.1016/j.chom.2017.06.012 . PubMed PMID: 28704658; PMCID: PMC5558241
doi: 10.1016/j.chom.2017.06.012
pubmed: 28704658
pmcid: 5558241
Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166(3):347–357. https://doi.org/10.1083/jcb.200312007 . PubMed PMID: 15277541; PMCID: PMC2172269
doi: 10.1083/jcb.200312007
pubmed: 15277541
pmcid: 2172269
Zeschnigk M, Kozian D, Kuch C, Schmoll M, Starzinski-Powitz A (1995) Involvement of M-cadherin in terminal differentiation of skeletal muscle cells. J Cell Sci 108(Pt 9):2973–2981. PubMed PMID: 8537437
doi: 10.1242/jcs.108.9.2973
pubmed: 8537437
Zhang Q, Vashisht AA, O’Rourke J, Corbel SY, Moran R, Romero A, Miraglia L, Zhang J, Durrant E, Schmedt C, Sampath SC, Sampath SC (2017) The microprotein Minion controls cell fusion and muscle formation. Nat Commun 8:15664. https://doi.org/10.1038/ncomms15664 . Epub 2017/06/02. PubMed PMID: 28569745; PMCID: PMC5461507
doi: 10.1038/ncomms15664
pubmed: 28569745
pmcid: 5461507