Mapping flood vulnerability using an analytical hierarchy process (AHP) in the Metropolis of Mumbai.

LULC Multi-criteria assessment (MCE) Urban flooding Vicinity Waterlogged locations

Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
27 Nov 2023
Historique:
received: 05 07 2023
accepted: 13 11 2023
medline: 28 11 2023
pubmed: 27 11 2023
entrez: 26 11 2023
Statut: epublish

Résumé

The burgeoning significance of urban floods in the context of evolving climate dynamics and shifting rainfall patterns underscores the exigency for comprehensive investigation and mitigation strategies. The study employs a multi-criteria assessment (MCE) approach and the analytical hierarchy process (AHP) to evaluate flood-vulnerable zones, wards, and sub-category-wise flood locations in Greater Mumbai. The AHP technique is used to evaluate flood-vulnerable impacting parameters such as rainfall (29.42%), slope (20.96%), land use/land cover (17.52%), vicinity to sewers and storm-water drainage (13.99%), vicinity to natural drainage (8.97%), vegetation (5.58%), and soil (3.56%). The study area is classified under different vulnerable categories as severe vulnerable (46.72%), high to very high (18.74%), and slight to moderate (34.54%). Researchers analysed 234 waterlogged locations, revealing that 85.46% (200 locations) were in the severe to very high vulnerability category, and only 14.52% (34 locations) were in the other three categories. Flood locations are more affected by slope (under the categories of < 5 m and 5.01-10 m), built-up land, sewers and storm water drainage (< 125 m), natural drainage (< 250 m), rainfall (< 2000 to 2200 mm), lowest dense vegetation, and coastal alluvium in soils. These model-based flood vulnerability maps are crucial for planning flood conservation and mitigation measures.

Identifiants

pubmed: 38008879
doi: 10.1007/s10661-023-12141-5
pii: 10.1007/s10661-023-12141-5
doi:

Substances chimiques

Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1534

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Afshar, A., Marino, M. A., Saadatpour, M., & Afshar, A. (2011). Fuzzy TOPSIS multi-criteria decision analysis applied to Karun reservoirs system. Water Resources Management, 25(2), 545–563. https://doi.org/10.12652/Ksce.2013.33.3.917
doi: 10.12652/Ksce.2013.33.3.917
Ahammed, F., Hewa, G. A., & Argue, J. R. (2012). Applying multi-criteria decision analysis to select WSUD and LID technologies. Water Science & Technology: Water Supply, 12(6), 844–853. https://doi.org/10.2166/ws.2012.060
doi: 10.2166/ws.2012.060
Ahmadisharaf, A., Kalyanapu, A. J., & Chung, E. S. (2015). Evaluating the effects of inundation duration and velocity on selection of flood management alternatives using multi-criteria decision making. Water Resources Management, 29(8), 2543–2561. https://doi.org/10.1007/s11269-015-0956-4
doi: 10.1007/s11269-015-0956-4
Ali, S. A., Khatun, R., Ahmad, A., & Ahmad, S. N. (2019). Application of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, India. Modelling Earth Systems and Environment, 5, 1083–1102. https://doi.org/10.1007/s40808-019-00593-z
doi: 10.1007/s40808-019-00593-z
Al-Juaidi, A. E., Nassar, A., & Al-Juaidi, O. E. M. (2018). Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arabian Journal of Geosciences, 11, 1–10. https://doi.org/10.1007/s12517-018-4095-0
doi: 10.1007/s12517-018-4095-0
Altaf, F., Meraj, G., & Romshoo, S. A. (2013). Morphometric analysis to infer hydrological behaviour of Lidder watershed, Western Himalaya, India. Geography Journal, 178021. https://doi.org/10.1155/2013/178021
Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. CATENA, 114, 21–36. https://doi.org/10.1016/j.catena.2013.10.011
doi: 10.1016/j.catena.2013.10.011
Bhagat, B.R., & Gavin, G.W. (2013). Population change and migration in Mumbai Metropolitan Region: Implications for planning and governance. Asia Research Institute, Singapore, 201, 1–24. www.ari.nus.edu.sg/docs/wps/wps13_201.pdf
Bhowmik, S.K. (2011). Politics of urban space in Mumbai: Citizen versus urban working poor. Public Participation, pp 72–87. https://udri.org/wpcontent/uploads/Mumbai%20Reader/MR%209/05%2005%20Sharit%20K.%20Bhowmik%20-%20Politics%20of%20Urban%20Space%20in%20Mumbai,%20%E2%80%98Citizens%E2%80%99%20versus%20the%20urban%20working%20poor.pdf
Blazkova, S., & Beven, K. (1997). Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. Journal of Hydrology, 195(1–4), 256–278. https://doi.org/10.1016/S0022-1694(96)03238-6
doi: 10.1016/S0022-1694(96)03238-6
BMC. (2022). Flood risk in Mumbai—Consultative Stakeholder Workshop, Conference Proceedings, World Resources Institute, Mumbai. https://files.wri.org/d8/s3fs-public/2022-11/flood-workshop-conference-proceedings-wri-india.pdf?VersionId=sPRdeoWsPQZ8vU_5CEpcnWIKbGBNuvuK
Bohra, A. K., Basu, S., Rajagopal, E. N., Iyengar, G. R., Gupta, M. D., Ashrit, R., & Athiyaman, B. (2006). Heavy rainfall episode over Mumbai on 26 July 2005: Assessment of NWP guidance. Current Science, 90(9), 1188–1194 https://core.ac.kuk/download/pdf/151497029.pdf
Borrelli, P., Robinson, D. A., Panagos, P., & Ballabio, C. (2020). Land use and climate change impacts on global soil erosion by water (2015–2070). Environmental Sciences, 117(36), 21994–22001. https://doi.org/10.1073/pnas.2001403117
doi: 10.1073/pnas.2001403117
Chandra, M. K., Sutapa, S., & Pritam, A. (2023). Flood hazards and risk prediction by using the analytical hierarchy process on GIS platform: a case study in lower Ajay basin. India. Disaster Advances, 16(1), 1–13. https://doi.org/10.25303/1601da01013
doi: 10.25303/1601da01013
Chatterjee, M. (2010). Resilient flood loss response systems for vulnerable populations in Mumbai: A neglected alternative. Graduate School-New Brunswick Rutgers, The State University of New Jersey, U.S.A. https://doi.org/10.7282/T3G44Q2X
Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, 133–146. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.183.7856&rep=rep1&type=pdf
Choi, Y., Kang, J., & Kim, J. (2021). Urban flood adaptation planning for local governments: Hydrology analysis and optimization. International Journal of Disaster Risk Reduction, 59, 102213.
doi: 10.1016/j.ijdrr.2021.102213
Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651(2), 2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064
doi: 10.1016/j.scitotenv.2018.10.064
Chowdhuri, I., Chandra Pal, S. C., & Chakrabortty, Rabin. (2019). Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Advances in Space Research 65(5). https://doi.org/10.1016/j.asr.2019.12.003
Chung, E. S., Hong, W. P., Lee, K. S., & Burian, S. J. (2011). Integrated use of a continuous simulation model and multi-attribute decision-making for ranking urban watershed management alternatives. Water Resources Management, 25(2), 641–659. https://doi.org/10.1007/s11269-010-9718-5
doi: 10.1007/s11269-010-9718-5
Climate Action Plan (2022). Climate & air pollution risks and vulnerability assessment for Mumbai, India. Brihanmumbai Municipal Corporation, Mumbai, Maharashtra. https://drive.google.com/file/d/1fItAQZ3qPsNEFe4bsq24orbWqRHPp6d3/view
Currit, N. (2005). Development of a remotely sensed, historical landcover change database for rural Chihuahua, Mexico. International Journal of Applied Earth Observation and Geoinformation, 7(3), 232–247. https://doi.org/10.1016/j.jag.2005.05.001
doi: 10.1016/j.jag.2005.05.001
De-Brito, M. M., Evers, M., & Almoradie, A. D. S. (2018). Participatory flood vulnerability assessment: A multi-criteria approach. Hydrology and Earth System Sciences, 22, 373–390. https://doi.org/10.5194/hess-22-373-2018
doi: 10.5194/hess-22-373-2018
Ercanoglu, M., & Gokceoglu, C. (2002). Assessment of landslide susceptibility for a landslide prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Earth Sciences, 41, 720–730. https://doi.org/10.1007/s00254-001-0454-2
doi: 10.1007/s00254-001-0454-2
Farajzadeh, M. (2002). Flood susceptibility zonation of drainage basins using remote sensing and GIS, case study area: Gaveh rod Iran. Proceeding of International symposium on Geographic Information Systems, Istanbul, Turkey. https://www.researchgate.net/profile/ManuchehrFarajzadeh/publication/3962997_Flood_susceptibility_zonation_of_drainage_basins_using_remote_sensing_and_GIS_case_study_area_Gaveh_RodIran/links/55dac41b08aeb38e8a8a1f76/Flood-susceptibility-zonation-of-drainage-basins-using-remote-sensing-and-GIS-case-study-area-Gaveh-Rod-Iran.pdf
Feloni, E., Mousadis, I., & Baltas, E. (2020). Flood vulnerability assessment using a GIS‐based multi‐criteria approach —The case of Attica region. Journal of Flood Risk Management, 13. https://doi.org/10.1111/jfr3.12563
Fernandez, D. S., & Lutz, M. A. (2010). Urban flood hazard zoning in Tucuman Province, Argentina, using GIS and multicriteria decision analysis. Engineer Geolog, 111(1), 90–98. https://doi.org/10.1016/j.enggeo.2009.12.006
doi: 10.1016/j.enggeo.2009.12.006
FFC (Fact Finding Committee) Report on Mumbai Floods (2006). Maharashtra State Government committee Report 1, 1–359.  https://pdfslide.net/documents/fact-finding-committee-on-Mumbai-floods-vol1.html?page=5
Fowler, H. J., & Kilsby, C. G. (2003). A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000. International Journal of Climatology, 23, 1313–1334. https://doi.org/10.1002/joc.943
doi: 10.1002/joc.943
Ghosh, D., Banerjee, M., Karmakar, M., Mandal, D. (2022). Application of geoinformatics and AHP technique to delineate flood susceptibility zone: A case study of Silabati River Basin, West Bengal, India. In: Shit, P.K., Pourghasemi, H.R., Bhunia, G.S., Das, P., Narsimha, A. (eds) Geospatial Technology for Environmental Hazards. Advances in Geographic Information Science. Springer, Cham. https://doi.org/10.1007/978-3-030-75197-5_6
GIWR (Guidelines for implementing Wetlands (Conservation and Management) Rules). (2017). Ministry of Environment, Forest and Climate Change, Government of India, 1–51. https://moef.gov.in/wp-content/uploads/2020/01/final-version-and-printed-wetland-guidelines-rules-2017-03.01.20.pdf
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314, 1442–1445. https://doi.org/10.1126/science.1132027
doi: 10.1126/science.1132027
Gudhka, C. R., Bhandari, S. S., Morankar, P. S., & Badade, A. D. (2021). Mumbai floods- Case study on floods in reclaimed city. International Journal of Creative Research Thoughts, 9(7), 234–241. https://ijcrt.org/papers/IJCRT2107149.pdf
Guhathakurta, P., & Rajeevan, M. (2008). Trends in rainfall pattern over India. International Journal of Climatology, 28, 1453–1469. https://doi.org/10.1002/joc.1640
doi: 10.1002/joc.1640
Gupta, K. (2007). Urban flood resilience planning and management and lessons for the future: A case study of Mumbai. India. Urban Water Journal, 4(3), 183–194. https://doi.org/10.1080/15730620701464141
doi: 10.1080/15730620701464141
Hallegatte, S., Green, C., Nicholls, R. J., & Corfem-Morlot, J. (2013). Future flood losses in major coastal cities. Nature Climate Change, 3, 802–806. https://doi.org/10.1038/nclimate1979
doi: 10.1038/nclimate1979
Hallegatte, S. et al. (2010). Flood risks, climate change impacts and adaptation benefits in Mumbai: An initial assessment of socio-economic consequences of present and climate change induced flood risks and of possible adaptation options. OECD Environment Working Papers No. 27, OECD. https://doi.org/10.1787/19970900
Hammami, S., Zouhri, L., Souissi, D., et al. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12, 653. https://doi.org/10.1007/s12517-019-4754-9
doi: 10.1007/s12517-019-4754-9
Hasanuzzaman, M., Adhikary, P. P., Bera, B., & Shit, P. K. (2022). Flood vulnerability assessment using AHP and frequency ratio techniques. GIScience and Geo-environmental Modelling, 91–104. https://doi.org/10.1007/978-3-030-94544-2_6
He, F., Liu, J. Y., Zhuang, D. F., Zhang, W., & Liu, M. L. (2007). Assessing the effect of land use-land cover change on the change of urban heat island intensity. Theoretical and Applied Climatology, 90, 217–226. https://doi.org/10.1007/s00704-006-0273-1
doi: 10.1007/s00704-006-0273-1
Hoque, M., Tasfia, S., Ahmed, N., & Pradhan, B. (2019). Assessing spatial flood vulnerability at Kalapara Upazila in Bangladesh using an analytic hierarchy process. Sensors, 19, 1302. https://doi.org/10.3390/s19061302
doi: 10.3390/s19061302
Hughes, W. (1986). Deriving utilities using the analytic hierarchy process. Socio-Economic Planning Sciences, 20(6), 393–395. https://ideas.repec.org/a/eee/soceps/v20y1986i6p393-395.html
Islam, M. M., & Sado, K. (2001). Flood damage and modeling using satellite remote sensing data with GIS: Case study of Bangladesh. In: R. Jerry et al. ed. Remote sensing and hydrology (pp. 455–458). Oxford: IAHS Publication. https://www.cabdirect.org/cabdirect/abstract/20013152370
Jabbar, F. K., Grote, K., & Tucker, R. E. (2019). A novel approach for assessing watershed susceptibility using weighted overlay and analytical hierarchy process (AHP) methodology: A case study in Eagle Creek Watershed, USA. Environmental Science and Pollution Research, 26, 31981–31997. https://doi.org/10.1007/s11356-019-06355-9
doi: 10.1007/s11356-019-06355-9
Jati, M. I. H., Suroso, S., & Santoso, P. B. (2019). Prediction of flood areas using the logistic regression method (case study of the provinces Banten, DKI Jakarta, and West Java). Journal of Physics Conference Series, 1367(1), 012087. https://doi.org/10.1088/1742-6596/1367/1/012087
doi: 10.1088/1742-6596/1367/1/012087
Kadave, P. T., Kale, A. D., & Narwade, S. (2016). Mumbai floods, reasons and solutions. International Journal of Scientific and Research Publication, 6(3), 224–228.
Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423, 528–531. https://doi.org/10.1038/nature01675
doi: 10.1038/nature01675
Khosravi, K., Shahabi, H., Pham, B. T., Adamowski, J., Shirzadi, A., Pradhan, B., Dou, J., Ly, H. B., Gr´of, G., Ho, H. L., Hong, H., Chapi, K., & Prakash, I. (2019). A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology, 573, 311–323.
doi: 10.1016/j.jhydrol.2019.03.073
Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67(1), 251–264. https://www.academia.edu/13774888/An_artificial_neural_network_model_for_flood_simulation_using_GIS_Johor_River_Basin_Malaysia
Korhonen, R. A., & Lewandowski, J. W. (1989). Multiple attribute decision making: Methods and applications. Lectures Notes in Economics and Mathematical Systems, 186, 1–412. https://pure.iiasa.ac.at/id/eprint/3476/1/XB-91-005.pdf
Kulkarni, A. T., Eldho, T. I., Rao, E. P., & Mohan, B. K. (2014a). An integrated flood inundation model for coastal urban watershed of Navi Mumbai. India. Natural Hazard, 73(2), 403–425. https://doi.org/10.1007/s11069-014-1079-6
doi: 10.1007/s11069-014-1079-6
Kulkarni, A. T., Mohanty, J., Eldho, T. I., Rao, E. P., & Mohan, B. K. (2014b). A web GIS based integrated flood assessment modeling tool for coastal urban watersheds. Computers & Geosciences, 64, 7–14. https://dl.acm.org/doi/ https://doi.org/10.5555/2745548.2745634
Kumar, R., Jawale, P., & Tandon, S. (2008). Economic impact of climate change on Mumbai, India. Regional Health Forum, 12, 38–42. https://www.researchgate.net/publication/237403942_Economic_impact_of_climate_change_on_Mumbai_India
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. https://pubmed.ncbi.nlm.nih.gov/843571/
Lee, S., Kim, Y. S., & Oh, H. J. (2012b). Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. Journal of Environmental Management, 96, 91–105. https://doi.org/10.1016/j.jenvman.2011.09.016
doi: 10.1016/j.jenvman.2011.09.016
Lee, M. J., Kang, J. E., & Jeon, S. (2012b). Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. Geoscience and Remote Sensing Symposium (IGARSS), Munich, 895–898. https://doi.org/10.1109/IGARSS.2012.6351414
Lourenço, I. B., Beleño de Oliveira, A. K., Marques, L. S., Quintanilha Barbosa, A. A., Veról, A. P., Magalhães, P. C., & Miguez, M. G. (2020). A framework to support flood prevention and mitigation in the landscape and urban planning process regarding water dynamics. Journal of Cleaner Production, 277, 122983.
doi: 10.1016/j.jclepro.2020.122983
Lowry, W. P. (1977). Empirical estimation of urban effects on climate: A problem analysis. Journal of Applied Meteorology and Climatology, 16, 129–135. https://doi.org/10.1175/1520-0450(1977)016%3c0129:EEOUEO%3e2.0.CO;2
doi: 10.1175/1520-0450(1977)016<0129:EEOUEO>2.0.CO;2
Mann, R., Gupta, A., Dhorde, A., & Sharma, S. (2023). Observed trends and coherent changes in daily rainfall extremes over Greater Mumbai, 1985–2020. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-022-04354-4
doi: 10.1007/s00704-022-04354-4
Mann, R., & Gupta, A. (2022). Temporal trends of rainfall and temperature over two sub-divisions of Western Ghats. HighTech and Innovation Journal, 3, 28–42. https://doi.org/10.28991/HIJ-SP2022-03-03
Masmoudi, M., & Habaieb, H. (1993). The performance of some real-time statistical flood forecasting models seen through multi-criterias analysis. Water Resources Management, 7, 57–67.
doi: 10.1007/BF00872242
MCGM, (2007). Greater Mumbai Disaster management action plan. Volume 1. https://dm.mcgm.gov.in/assets/pdf/Disaster % 20Management%20Pla n-% 20City. pdf. Accessed 16 June 2022
Mishra, K., & Sinha, R. (2020). Flood risk assessment in the Kosimegafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology, 350, 106861. https://doi.org/10.1016/j.geomorph.2019.106861
doi: 10.1016/j.geomorph.2019.106861
Mohanty, M. M., Nithya, S., Nair, A. S., Indu, J., Ghosh, S., Bhatt, C. M., Rao, G. S., & Karmakar, S. (2020). Sensitivity of various topographic data in flood management: Implications on inundation mapping over large data-scarce regions. Journal of Hydrology, 590, 125523. https://doi.org/10.1016/j.jhydrol.2020.125523
doi: 10.1016/j.jhydrol.2020.125523
Mutizwa-Mangiza, N. D., Arimah, B. C., Jensen, I., Yemeru, E. A., & Kinyanjui, M. K. (2011). Cities and climate change: Global report on human settlements 2011. UN-HABITAT, Washington, DC: United Nations Human Settlements Programme.
Naghibi, S. A., Pourghasemi, H. R., Pourtaghie, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan Watershed. Iran. Earth Science Informatics, 8(1), 171–186. https://doi.org/10.1007/s12145-014-0145-7
doi: 10.1007/s12145-014-0145-7
Nasiri, H., Yusof, M. J. M., Ali, T. A. M., & Hussein, M. K. B. (2019). District flood vulnerability index: Urban decision-making tool. International Journal of Environmental Science and Technology, 16, 2249–2258. https://doi.org/10.1007/s13762-018-1797-5
doi: 10.1007/s13762-018-1797-5
NDMA. (2019). National Disaster Management Plan. National Disaster Management Authority, Ministry of Home Affairs, Government of India, 1–347. https://ndma.gov.in/sites/default/files/PDF/ndmp-2019.pdf
Ohashi, Y., & Kida, H. (2002). Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. Journal of Applied Meteorology and Climatology, 41, 30–45. https://doi.org/10.1175/1520-0450(2002)041%3c0030:LCDITV%3e2.0.CO;2
doi: 10.1175/1520-0450(2002)041<0030:LCDITV>2.0.CO;2
Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water, 6(6), 1515–1545. https://doi.org/10.3390/w6061515
doi: 10.3390/w6061515
Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197. https://doi.org/10.1016/j.jseaes.2012.12.014
doi: 10.1016/j.jseaes.2012.12.014
Pal, D. (2013). Soils of India: Historical perspective, classification and recent advances. Current Science, 104, 1308–1323. https://www.researchgate.net/publication/262374539_Soils_of_India_historical_perspective_classification_and_recent_advances
Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68, 1443–1464. https://doi.org/10.1007/s12665-012-1842-5
doi: 10.1007/s12665-012-1842-5
Patankar, A. (2015). The exposure, vulnerability, and ability to respond of poor households to recurrent floods in Mumbai. Policy Research Working Paper, 7481, World Bank, Washington, DC. http://hdl.handle.net/10986/23434
Patwardhan, M. (2017). Case study of health and climate risks in informal settlements in Mumbai: A case of Deonar. Building Inclusive Urban Communities, Kamla Raheja Vidyanidhi Institute of Architecture and Environmental Studies, Mumbai, India. https://mdl.donau-uni.ac.at/binucom/pluginfile.php/405/mod_page/content/38/KRVIA_6_K.pdf
Pemmaraju, G. (2012). Rains, drains and delays: Flood mitigation in Mumbai. Waterleader, 30(4), 439–442. https://udri.org/wp-content/uploads/Mumbai%20Reader/MR%2013/30%20Flood%20Mitigation%20In%20Mumbai-%20Rains,%20Drains%20And%20Delays_Gautam%20Pemmaraju.pdf
M.Plan. (2009). Managing disaster risk case study: Mumbai Megacity. Department of Urban Planning, School of Planning & Architecture, New Delhi. http://spa.ac.in/writereaddata/Mum-Disaster-Mgmnt-Summary-Report.pdf
Porwal, A., González-Álvarez, I., Markwitz, V., McCuaig, T. C., & Mamuse, A. (2010). Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geolog Reviews, 38, 184–196. https://doi.org/10.1016/j.oregeorev.2010.04.002
doi: 10.1016/j.oregeorev.2010.04.002
Pourghasemi, H. R., Moradi, H. R., & Fatemi-Aghda, S. M. (2013a). Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazard, 69, 749–779. https://doi.org/10.1007/s11069-013-0728-5
doi: 10.1007/s11069-013-0728-5
Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., & Moradi, H. R. (2013b). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed. Iran. Arabian Journal of Geosciences, 6, 2351–2365. https://doi.org/10.1007/s12517-012-0532-7
doi: 10.1007/s12517-012-0532-7
Rahmati, O., Pourghasemi, H. R., & Zeiniv, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province. Iran. Geocarto International, 31(1), 42–70. https://doi.org/10.1080/10106049.2015.1041559
doi: 10.1080/10106049.2015.1041559
Rajeevan, M., Bhate, J., & Jaswal, A. K. (2008). Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research Letters, 35, L18707. https://doi.org/10.1029/2008GL035143
doi: 10.1029/2008GL035143
Rakhecha, P. R., & Pisharoty, P. R. (1996). Heavy rainfall during monsoon season: Point and spatial distribution. Current Science, 71, 177–186.
Ramazi, H., & Amini, A. (2014). Fuzzy logic application in compiling multi geohazards macro-zone maps; case study: Rahdar, 1:25,000 Quadrangle, Khuzestan. Iran. Arabian Journal of Geosciences, 7, 3243–3249. https://doi.org/10.1007/s12517-013-0943-0
doi: 10.1007/s12517-013-0943-0
Ramesh, V., & Iqbal, S. S. (2020). Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: a case study of Greater Mumbai, Maharashtra, India. Geocarto International. https://doi.org/10.1080/10106049.2020.1730448
Ranger, N., et al. (2011). An assessment of the potential impact of climate change on flood risk in Mumbai. Climate Change, 104, 139–167. https://doi.org/10.1007/s10584-010-9979-2
doi: 10.1007/s10584-010-9979-2
Rao, M., Sastry, S. V. C., Yadar, P. D., Kharod, K., Pathan, S. K., Dhinwa, P. S., Majumdar, K. L., Sampat, K. D., Patkar, V. N., & Phatak, V. K. (1991). A weighted index model for urban suitability assessment – A GIS approach. Bombay, Bombay Metropolitan Regional Development Authority, Mumbai.
Ravan, S.V. (2014). Impact of LPG on Indian Economy. Prime International Research Journal, 1(4), 21–33. https://www.researchgate.net/publication/299623274_Impact_of_LPG_on_Indian_Economy
Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., & Akg, A. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7, 725–742. https://doi.org/10.1007/s12517-012-0807-z
doi: 10.1007/s12517-012-0807-z
Reshma, R. P., & Deepankar, C. (2015). Vulnerability mapping for disaster assessment using ArcGIS tools and techniques for Mumbai City, India. 16th ESRI India User Conference. http://www.esri.in/media/esriindia/files/pdfs/events/uc2015/proceedings/papers/UCP062.pdf .
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S., & Imeson, A. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature, 453(7193), 353–357. https://doi.org/10.1038/nature06937
doi: 10.1038/nature06937
Ross, C. W., Prihodko, L., Anchang, J. Y., Kumar, S. S., Ji, W., & Hanan, N. P. (2018). Global hydrologic soil groups (HYSOGs250m) for curve number-based runoff modeling. Oak Ridge, TN: ORNL DAAC.  https://doi.org/10.3334/ORNLDAAC/1566
Roy, S., Bose, A., & Chowdhury, I. R. (2021). Flood risk assessment using geospatial data and multi-criteria decision approach: A study from historically active flood-prone region of Himalayan foothill. India. Arabian Journal of Geosciences, 14, 999. https://doi.org/10.1007/s12517-021-07327-8
doi: 10.1007/s12517-021-07327-8
Saaty, T. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5
doi: 10.1016/0022-2496(77)90033-5
Saaty, T. L., & Vargas, L. G. (1991). Prediction, projection and forecasting, Kluwer Academic Publishers, Dordrecht 251. https://doi.org/10.1007/978-94-015-7952-0
Saaty, T. (1980). The analytic hierarchy process, New York, McGraw-Hill, USA. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1943982
Sahana, M., Dutta, S., & Sajjad, H. (2018). Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. International Journal of Urban Sciences. https://doi.org/10.1080/12265934.2018.1488604
Sahoo, A., Samantaray, S., Bankuru, S., & Ghose, D. (2020). Prediction of flood using adaptive neuro-fuzzy inference systems: A case study. In :Smart Intelligent Computing and Applications, https://doi.org/10.1007/978-981-13-9282-5_70
Sarkar, D., & Mondal, P. (2020). Flood vulnerability mapping using frequency ratio (FR) model: A case study on Kulik river basin Indo-Bangladesh Barind Region. Applied Water Science, 10, 17. https://doi.org/10.1007/s13201-019-1102-x
doi: 10.1007/s13201-019-1102-x
Sarkar, L.H. (2017). Mangroves in Mumbai. International Journal of Creative Research Thoughts, 5(4), 1487–1488. https://www.ijcrt.org/papers/IJCRT1704193.pdf
Schmold, D. L., Kangas, J., Mendoza, G., & Pesonen, M. (2001). The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making. https://doi.org/10.1007/978-94-015-9799-9
doi: 10.1007/978-94-015-9799-9
Shafapour, T. M., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79. https://doi.org/10.1016/j.jhydrol.2013.09.034
doi: 10.1016/j.jhydrol.2013.09.034
Shukla, K. (2009). Disaster & development. Journal of the National Institute of Disaster Management, New Delhi, 3(2), 1–186. https://nidm.gov.in/PDF/Journal/Journal20092.pdf
Siddiqui, M. Z., Everett, J. W., & Vieux, B. E. (1996). Landfill siting using Geographic Information Systems: A demonstration, Journal of Environmental Engineering, 122(6), 515–523. https://www.sciencebase.gov/catalog/item/505355a4e4b097cd4fcd29f6
Singh, D. (2022). Causes, impacts, risk and mitigation of Urban Flood Management in India. International Centre for Environment Audit and Sustainable Development (iCED), Jaipur, India. https://iced.cag.gov.in/wp-content/uploads/Series2.pdf
Starr, M. K., & Zeleny, M. (1978). Multiple criteria decision making. Technometrics, 20, 105. https://doi.org/10.2307/1268169
doi: 10.2307/1268169
Stecko, S., & Barber, N. (2007). Exposing vulnerabilities: Monsoon floods in Mumbai, India. Case study prepared for Revisiting Urban Planning: Global Report on Human Settlements 2007, 3–14. http://www.unhabitat.org/grhs/2007
Subbarayan, S., & Sivaranjani, S. (2020). Modelling of flood susceptibility based on GIS and analytical hierarchy process—A case study of Adayar River Basin, Tamilnadu, India. In I. Pal, J. von Meding, S. Shrestha, I. Ahmed, & T. Gajendran (Eds.), An Interdisciplinary Approach for Disaster Resilience and Sustainability (pp. 91–110). Springer.
doi: 10.1007/978-981-32-9527-8_6
Taromideh, F., Fazloula, R., Choubin, B., Emadi, A., & Berndtsson, R. (2022). Urban flood-risk assessment: Integration of decision-making and machine learning. Sustainability, 14(8), 4483. https://doi.org/10.3390/su14084483
doi: 10.3390/su14084483
Tehrany, M. S., & Kumar, L. (2018). The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environmental Earth Sciences, 77(13), 490. https://agris.fao.org/agris-search/search.do?recordID=US201800349302
Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343. https://www.academia.edu/30723757/Flood_susceptibility_mapping_using_a_novel_ensemble_weights_of_evidence_and_support_vector_machine_models_in_GIS
Termeh, S. V. R., Kornejady, A., Poughasemi, H. R., & Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438–451. https://doi.org/10.1016/j.scitotenv.2017.09.262
doi: 10.1016/j.scitotenv.2017.09.262
Veerappan, R., & Sayed, S. I. (2020). Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: A case study of Greater Mumbai. Maharashtra, India, Geocarto International,. https://doi.org/10.1080/10106049.2020.1730448
doi: 10.1080/10106049.2020.1730448
Wahab, A. M., & Norasikin, A. L. (2018). Flood vulnerability assessment using artificial neural networks in Muar Region, Johor Malaysia. IOP Conference Series Earth and Environmental Science, 169(1), 012056. https://doi.org/10.1088/1755-1315/169/1/012056
doi: 10.1088/1755-1315/169/1/012056
Yeon, Y. K., Han, J. G., & Ryu, K. H. (2010). Landslide susceptibility mapping in Injae, Korea, using a decision tree. Engineer Geolog, 116, 274–283. https://doi.org/10.1016/j.enggeo.2010.09.009
doi: 10.1016/j.enggeo.2010.09.009
Young, K. (2006). Application of the analytic hierarchy process optimization algorithm in best management practice selection. Virginia Polytechnic Institute and State University.
Young, K., Dymond, R., & Kibler, D. (2011). Development of an improved approach for selecting storm-water best management practices. Journal of Water Resources Planning and Management, 137, 268–275. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000110
doi: 10.1061/(ASCE)WR.1943-5452.0000110
Young, K., Kibler, D., Benham, B., & Loganathan, G. (2009). Application of the analytical hierarchical process for improved selection of storm water BMPs. Journal of Water Resources Planning and Management, 135(4). https://doi.org/10.1061/(ASCE)0733-9496(2009)135:4(264 )
Zare, M., Pourghasemi, H. R., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences, 6, 2873–2888. https://doi.org/10.1007/s12517-012-0610-x
doi: 10.1007/s12517-012-0610-x
Zimmermann, T., Shinde, S., Parthasarathy, D., & Narayanan, N. C. (2023). Linking climate change adaptation and disaster risk reduction: Reconceptualizing flood risk governance in Mumbai. Journal of Integrative Environmental Sciences, 20(1), 1–29. https://doi.org/10.1080/1943815X.2023.2169712
doi: 10.1080/1943815X.2023.2169712
Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2015). Impacts of urbanization on flooding of a coastal urban catchment: A case study of Mumbai City. India. Natural Hazard, 75(1), 887–908. https://doi.org/10.1007/s11069-014-1356-4
doi: 10.1007/s11069-014-1356-4
Zope, P. E., Eldho, T. I., & Jothiprakash, V. (2017). Hydrological impacts of land use–land cover change and detention basins on urban flood hazard: A case study of Poisar River basin, Mumbai. India. Natural Hazard, 87(3), 1267–1283. https://doi.org/10.1007/s11069-017-2816-4
doi: 10.1007/s11069-017-2816-4
Zou, Q., Zhou, J., Zhou, C., Song, L., & Guo, J. (2013). Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stochastic Environmental Research and Risk Assessment, 27, 525–546. https://doi.org/10.1007/s00477-012-0598-5
doi: 10.1007/s00477-012-0598-5

Auteurs

Rohit Mann (R)

Department of Geography, Kurukshetra University, Kurukshetra, 136119, India. mannrohit96@gmail.com.

Anju Gupta (A)

Department of Geography, Kurukshetra University, Kurukshetra, 136119, India.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH