Repli-seq Sample Preparation using Cell Sorting with Cell-Permeant Dyes.

Repli-seq cell cycle flow cytometry intact nuclei replication timing

Journal

Current protocols
ISSN: 2691-1299
Titre abrégé: Curr Protoc
Pays: United States
ID NLM: 101773894

Informations de publication

Date de publication:
Nov 2023
Historique:
medline: 28 11 2023
pubmed: 27 11 2023
entrez: 27 11 2023
Statut: ppublish

Résumé

Replication timing is significantly correlated with gene expression and chromatin organization, changes dynamically during cell differentiation, and is altered in diseased states. Genome-wide analysis of replication timing is performed in actively replicating cells by Repli-seq. Current methods for Repli-seq require cells to be fixed in large numbers. This is a barrier for sample types that are sensitive to fixation or are in very limited numbers. In this article, we outline optimized methods to process live cells and intact nuclei for Repli-seq. Our protocol enables the processing of a smaller number of cells per sample and reduces processing time and sample loss while obtaining high-quality data. Further, for samples that tend to form clumps and are difficult to dissociate into a single-cell suspension, we also outline methods for isolation, staining, and processing of nuclei for Repli-seq. The Repli-seq data obtained from live cells and intact nuclei are comparable to those obtained from the standard protocols. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Live cell isolation and staining Alternate Protocol: Nuclei isolation and staining.

Identifiants

pubmed: 38009262
doi: 10.1002/cpz1.945
doi:

Substances chimiques

Coloring Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e945

Informations de copyright

© 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.

Références

Boquest, A. C., Day, B. N., & Prather, R. S. (1999). Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biology of Reproduction, 60(4), 1013-1019. https://doi.org/10.1095/biolreprod60.4.1013
Bracci, A. N., Dallmann, A., Ding, Q., Hubisz, M. J., Caballero, M., & Koren, A. (2023). The evolution of the human DNA replication timing program. Proceedings of the National Academy of Sciences of the United States of America, 120(10), e2213896120. https://doi.org/10.1073/pnas.2213896120
Current Protocols. (2006). Commonly Used Reagents. Current Protocols in Microbiology, 00, A.2A.1-A.2A.15. https://doi.org/10.1002/9780471729259.mca02as00
Dileep, V., & Gilbert, D. M. (2018). Single-cell replication profiling to measure stochastic variation in mammalian replication timing. Nature Communications, 9(1), 427. https://doi.org/10.1038/s41467-017-02800-w
ENCODE Project Consortium, Moore, J. E., Purcaro, M. J., Pratt, H. E., Epstein, C. B., Shoresh, N., Adrian, J., Kawli, T., Davis, C. A., Dobin, A., Kaul, R., Halow, J., van Nostrand, E. L., Freese, P., Gorkin, D. U., Shen, Y., He, Y., Mackiewicz, M., Pauli-Behn, F., … Weng, Z. (2020). Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature, 583, 699-710. https://doi.org/10.1038/s41586-020-2493-4
Farkash-Amar, S., Lipson, D., Polten, A., Goren, A., Helmstetter, C., Yakhini, Z., & Simon, I. (2008). Global organization of replication time zones of the mouse genome. Genome Research, 18, 1562-1570. https://doi.org/10.1101/gr.079566.108
Hansen, R. S., Thomas, S., Sandstrom, R., Canfield, T. K., Thurman, R. E., Weaver, M., Dorschner, M. O., Gartler, S. M., & Stamatoyannopoulos, J. A. (2010). Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 139-144. https://doi.org/10.1073/pnas.0912402107
Hiratani, I., Ryba, T., Itoh, M., Yokochi, T., Schwaiger, M., Chang, C. W., Lyou, Y., Townes, T. M., Schübeler, D., & Gilbert, D. M. (2008). Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biology, 6(10), 2220-2236. https://doi.org/10.1371/journal.pbio.0060245
Hiratani, I., Ryba, T., Itoh, M., Rathjen, J., Kulik, M., Papp, B., Fussner, E., Bazett-Jones, D. P., Plath, K., Dalton, S., Rathjen, P. D., & Gilbert, D. M. (2010). Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Research, 20, 155-169. https://doi.org/10.1101/gr.099796.109
Hulke, M. L., Massey, D. J., & Koren, A. (2020). Genomic methods for measuring DNA replication dynamics. Chromosome Research, 9, 1-19. https://doi.org/10.1007/s10577-019-09624-y
Klein, K. N., Zhao, P. A., Lyu, X., Sasaki, T., Bartlett, D. A., Singh, A. M., Tasan, I., Zhang, M., Watts, L. P., Hiraga, S. I., Natsume, T., Zhou, X., Baslan, T., Leung, D., Kanemaki, M. T., Donaldson, A. D., Zhao, H., Dalton, S., Corces, V. G., & Gilbert, D. M. (2021). Replication timing maintains the global epigenetic state in human cells. Science, 372(6540), 371-378. https://doi.org/10.1126/science.aba5545
Kodali, S., Meyer-Nava, S., Landry, S., Chakraborty, A., Rivera-Mulia, J. C., & Feng, W. (2022). Epigenomic signatures associated with spontaneous and replication stress-induced DNA double strand breaks. Frontiers in Genetics, 13, 907547. https://doi.org/10.3389/fgene.2022.907547
Liu, Y., Ai, C., Gan, T., Wu, J., Jiang, Y., Liu, X., Lu, R., Gao, N., Li, Q., Ji, X., & Hu, J. (2021). Transcription shapes DNA replication initiation to preserve genome integrity. Genome Biology, 22, 176. https://doi.org/10.1186/s13059-021-02390-3
MacAlpine, D. M., Rodríguez, H. K., & Bell, S. P. (2004). Coordination of replication and transcription along a Drosophila chromosome. Genes & Development, 18, 3094-3105. https://doi.org/10.1101/gad.1246404
Marchal, C., Sasaki, T., Vera, D., Wilson, K., Sima, J., Rivera-Mulia, J. C., Trevilla-García, C., Nogues, C., Nafie, E., & Gilbert, D. M. (2018). Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq. Nature Protocols, 13(5), 819-839. https://doi.org/10.1038/nprot.2017.148
Massey, D. J., & Koren, A. (2022). High-throughput analysis of single human cells reveals the complex nature of DNA replication timing control. Nature Communications, 13, 2402. https://doi.org/10.1038/s41467-022-30212-y
Miura, H., Takahashi, S., Shibata, T., Nagao, K., Obuse, C., Okumura, K., Ogata, M., Hiratani, I., & Takebayashi, S.-I. (2020). Mapping replication timing domains genome wide in single mammalian cells with single-cell DNA replication sequencing. Nature Protocols, 15, 4058-4100. https://doi.org/10.1038/s41596-020-0378-5
Pope, B. D., Ryba, T., Dileep, V., Yue, F., Wu, W., Denas, O., Vera, D. L., Wang, Y., Hansen, R. S., Canfield, T. K., Thurman, R. E., Cheng, Y., Gülsoy, G., Dennis, J. H., Snyder, M. P., Stamatoyannopoulos, J. A., Taylor, J., Hardison, R. C., Kahveci, T., & Gilbert, D. M. (2014). Topologically associating domains are stable units of replication-timing regulation. Nature, 515(7527), 402-405. https://doi.org/10.1038/nature13986
Poulet, A., Li, B., Dubos, T., Rivera-Mulia, J. C., Gilbert, D. M., & Qin, Z. S. (2019). RT States: Systematic annotation of the human genome using cell type-specific replication timing programs. Bioinformatics, 35(13), 2167-2176. https://doi.org/10.1093/bioinformatics/bty957
Rivera-Mulia, J. C., Buckley, Q., Sasaki, T., Zimmerman, J., Didier, R., Nazor, K., Loring, J. F., Lian, Z., Weissman, S., Robins, A. J., Schulz, T. C., Menendez, L., Kulik, M. J., Dalton, S., Gabr, H., Kahveci, T., & Gilbert, D. M. (2015). Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells. Genome Research, 25(8), 1091-1103. http://www.genome.org/cgi/doi/10.1101/gr.187989.114
Rivera-Mulia, J. C., & Gilbert, D. M. (2016a). Replication timing and transcriptional control: Beyond cause and effect-part III. Current Opinion in Cell Biology, 40, 168-178. https://doi.org/10.1016/j.ceb.2016.03.022
Rivera-Mulia, J. C., & Gilbert, D. M. (2016b). Replicating large genomes: Divide and conquer. Molecular Cell, 62(5), 756-765. https://doi.org/10.1016/j.molcel.2016.05.007
Rivera-Mulia, J. C., Sasaki, T., Trevilla-Garcia, C., Nakamichi, N., Knapp, D. J. H. F., Hammond, C. A., Chang, B. H., Tyner, J. W., Devidas, M., Zimmerman, J., Klein, K. N., Somasundaram, V., Druker, B. J., Gruber, T. A., Koren, A., Eaves, C. J., & Gilbert, D. M. (2019). Replication timing alterations in leukemia affect clinically relevant chromosome domains. Blood Advances, 3(21), 3201-3213. https://doi.org/10.1182/bloodadvances.2019000641
Rivera-Mulia, J. C., Schwerer, H., Besnard, E., Desprat, R., Trevilla-Garcia, C., Sima, J., Bensadoun, P., Zouaoui, A., Gilbert, D. M., & Lemaitre, J. M. (2018). Cellular senescence induces replication stress with almost no affect on DNA replication timing. Cell Cycle, 17(13), 1667-1681. https://doi.org/10.1080/15384101.2018.1491235
Rivera-Mulia, J. C., Desprat, R., Trevilla-Garcia, C., Cornacchia, D., Schwerer, H., Sasaki, T., Sima, J., Fells, T., Studer, L., Lemaitre, J. M., & Gilbert, D. M. (2017). DNA replication timing alterations identify common markers between distinct progeroid diseases. Proceedings of the National Academy of Sciences of the United States of America, 114(51), E10972-E10980. https://doi.org/10.1073/pnas.1711613114
Rivera-Mulia, J. C., Trevilla-Garcia, C., & Martinez-Cifuentes, S. (2022). Optimized Repli-seq: Improved DNA replication timing analysis by next-generation sequencing. Chromosome Research, 30(4), 401-414. https://doi.org/10.1007/s10577-022-09703-7
Ryba, T., Hiratani, I., Lu, J., Itoh, M., Kulik, M., Zhang, J., Schulz, T. C., Robins, A. J., Dalton, S., & Gilbert, D. M. (2010). Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Research, 20(6), 761-770. https://doi.org/10.1101/gr.099655.109
Ryba, T., Battaglia, D., Pope, B. D., Hiratani, I., & Gilbert, D. M. (2011). Genome-scale analysis of replication timing: From bench to bioinformatics. Nature Protocols, 6(6), 870-895. https://doi.org/10.1038/nprot.2011.328
Sarni, D., Sasaki, T., Irony Tur-Sinai, M., Miron, K., Rivera-Mulia, J. C., Magnuson, B., Ljungman, M., Gilbert, D. M., & Kerem, B. (2020). 3D genome organization contributes to genome instability at fragile sites. Nature Communications, 11(1), 3613. https://doi.org/10.1038/s41467-020-17448-2
Sasaki, T., Rivera-Mulia, J. C., Vera, D., Zimmerman, J., Das, S., Padget, M., Nakamichi, N., Chang, B. H., Tyner, J., Druker, B. J., Weng, A. P., Civin, C. I., Eaves, C. J., & Gilbert, D. M. (2017). Stability of patient-specific features of altered DNA replication timing in xenografts of primary human acute lymphoblastic leukemia. Experimental Hematology, 71-82.e3. https://doi.org/10.1016/j.exphem.2017.04.004
Schübeler, D., Scalzo, D., Kooperberg, C., van Steensel, B., Delrow, J., & Groudine, M. (2002). Genomewide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing. Nature Genetics, 32, 438-442. https://doi.org/10.1038/ng1005
Solovei, I., Thanisch, K., & Feodorova, Y. (2016). How to rule the nucleus: Divide et impera. Current Opinion in Cell Biology, 40, 47-59. https://doi.org/10.1016/j.ceb.2016.02.014
Taylor, J. H. (1960). Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. The Journal of Biophysical and Biochemical Cytology, 7(3), 455-464. https://doi.org/10.1083/jcb.7.3.455
Topman, G., Sharabani-Yosef, O., & Gefen, A. (2011). A method for quick, low-cost automated confluency measurements. Microscopy and Microanalysis, 17(6), 915-922. https://doi.org/10.1017/S1431927611012153
Yang, Y., Gu, Q., Zhang, Y., Sasaki, T., Crivello, J., O'Neill, R. J., Gilbert, D. M., & Ma, J. (2018). Continuous-trait probabilistic model for comparing multi-species functional genomic data. Cell Systems, 7(2), 208-218. https://doi.org/10.1016/j.cels.2018.05.022
Zhao, P. A., Sasaki, T., & Gilbert, D. M. (2020). High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biology, 21(1), 76. https://doi.org/10.1186/s13059-020-01983-8
Zhang, J., Bellani, M. A., James, R. C., Pokharel, D., Zhang, Y., Reynolds, J. J., McNee, G. S., Jackson, A. P., Stewart, G. S., & Seidman, M. M. (2020). DONSON and FANCM associate with different replisomes distinguished by replication timing and chromatin domain. Nature Communications, 11(1), 3951. https://doi.org/10.1038/s41467-020-17449-1

Auteurs

Silvia Meyer-Nava (S)

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota.
Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota.

Anala V Shetty (AV)

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota.
Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota.

Juan Carlos Rivera-Mulia (JC)

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota.
Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota.
Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota.

Articles similaires

Animals Genome Fishes Chromosomes Molecular Sequence Annotation
Isopoda Animals Phylogeny Biological Evolution Transcriptome

Bank vole genomics links determinate and indeterminate growth of teeth.

Zachary T Calamari, Andrew Song, Emily Cohen et al.
1.00
Animals Arvicolinae Genomics Mice Tooth
Diatoms Genome Phylogeny

Classifications MeSH