Comparative genomics of a vertically transmitted thiotrophic bacterial ectosymbiont and its close free-living relative.

Zoothamnium niveum ectosymbiosis low-complexity metagenome sulphur-oxidizing bacteria thiotrophy

Journal

Molecular ecology resources
ISSN: 1755-0998
Titre abrégé: Mol Ecol Resour
Pays: England
ID NLM: 101465604

Informations de publication

Date de publication:
Jan 2024
Historique:
revised: 31 08 2023
received: 09 01 2023
accepted: 20 10 2023
medline: 17 12 2023
pubmed: 27 11 2023
entrez: 27 11 2023
Statut: ppublish

Résumé

Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.

Identifiants

pubmed: 38010882
doi: 10.1111/1755-0998.13889
doi:

Substances chimiques

RNA, Ribosomal, 16S 0
Sulfur 70FD1KFU70

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13889

Subventions

Organisme : Austrian Science Fund
ID : P 24565
Organisme : Austrian Science Fund
ID : P 32197
Organisme : WHOI Investment in Science Fund

Informations de copyright

© 2023 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

Références

Microbiome. 2021 Apr 12;9(1):87
pubmed: 33845886
Genome Biol. 2019 Nov 14;20(1):238
pubmed: 31727128
Genomics. 2010 Mar;95(3):129-37
pubmed: 20053372
J Biol Chem. 1987 Jan 5;262(1):478-85
pubmed: 3539939
Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2873-8
pubmed: 8610134
Mol Microbiol. 2006 Nov;62(3):794-810
pubmed: 16995898
Metabolites. 2017 Nov 11;7(4):
pubmed: 29137134
Bioinformatics. 2015 Oct 15;31(20):3350-2
pubmed: 26099265
ISME J. 2018 Mar;12(3):714-727
pubmed: 29426952
Front Microbiol. 2017 Mar 07;8:384
pubmed: 28326078
Proc Biol Sci. 2007 Sep 22;274(1623):2259-69
pubmed: 17660153
Proc Natl Acad Sci U S A. 2017 May 2;114(18):E3652-E3658
pubmed: 28416684
J Bacteriol. 2001 Feb;183(4):1242-7
pubmed: 11157936
Nat Rev Microbiol. 2011 Nov 08;10(1):13-26
pubmed: 22064560
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14109-14
pubmed: 21844375
Nat Rev Microbiol. 2008 Oct;6(10):725-40
pubmed: 18794911
Front Microbiol. 2011 May 24;2:116
pubmed: 21833341
J Bacteriol. 2013 Sep;195(18):4231-45
pubmed: 23873913
J Bacteriol. 2005 Sep;187(18):6258-64
pubmed: 16159757
J Mol Evol. 1981;17(6):368-76
pubmed: 7288891
Sci Rep. 2015 Feb 10;5:8365
pubmed: 25666585
Springerplus. 2013 Jul 01;2:291
pubmed: 24010024
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Mol Microbiol. 2004 Feb;51(4):1193-203
pubmed: 14763990
Mar Environ Res. 2010 Jun;69(5):382-9
pubmed: 20202680
J Bacteriol. 2017 Jan 30;199(4):
pubmed: 27920296
PLoS Comput Biol. 2009 Apr;5(4):e1000344
pubmed: 19343224
PLoS One. 2010 Jun 25;5(6):e11147
pubmed: 20593022
Science. 2007 Feb 16;315(5814):998-1000
pubmed: 17303757
ISME J. 2009 Aug;3(8):935-43
pubmed: 19360027
FEBS Lett. 2009 Apr 17;583(8):1281-6
pubmed: 19303410
Nucleic Acids Res. 1997 Mar 1;25(5):955-64
pubmed: 9023104
Microorganisms. 2015 Oct 21;3(4):707-24
pubmed: 27682113
J Biosci Bioeng. 2000;90(2):193-8
pubmed: 16232841
Chem Rev. 2007 Feb;107(2):563-76
pubmed: 17256993
Biochim Biophys Acta. 2004 Apr 12;1655(1-3):388-99
pubmed: 15100055
Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):346-351
pubmed: 24505072
Front Microbiol. 2014 Apr 07;5:145
pubmed: 24778630
Mol Ecol Resour. 2024 Jan;24(1):e13889
pubmed: 38010882
Microb Cell Fact. 2011 Aug 04;10:63
pubmed: 21816086
IUBMB Life. 2015 Apr;67(4):268-74
pubmed: 25913822
Environ Microbiol. 2010 Aug;12(8):2204-18
pubmed: 21966914
Bioinformatics. 2001 Aug;17(8):754-5
pubmed: 11524383
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5
pubmed: 17526522
Appl Environ Microbiol. 1999 Sep;65(9):3834-42
pubmed: 10473383
Biol Bull. 1951 Feb;100(1):59-70
pubmed: 14811902
Curr Biol. 2021 Jul 12;31(13):R862-R877
pubmed: 34256922
Appl Environ Microbiol. 2006 Mar;72(3):2014-21
pubmed: 16517650
Curr Opin Microbiol. 2016 Feb;29:81-93
pubmed: 26722980
Curr Opin Microbiol. 2013 Feb;16(1):52-8
pubmed: 23290191
FEMS Microbiol Rev. 2001 Aug;25(4):455-501
pubmed: 11524134
Front Genet. 2017 May 30;8:72
pubmed: 28611826
FEBS Lett. 1998 May 1;427(1):11-4
pubmed: 9613590
FEMS Microbiol Ecol. 2009 Feb;67(2):229-41
pubmed: 19120466
Nat Rev Genet. 2010 Jul;11(7):465-75
pubmed: 20517341
Annu Rev Microbiol. 2021 Oct 8;75:695-718
pubmed: 34351792
Nat Microbiol. 2016 Oct 24;2:16195
pubmed: 27775707
Mol Ecol Resour. 2022 Nov;22(8):3106-3123
pubmed: 35699368
Sci Rep. 2016 Mar 16;6:23080
pubmed: 26979785
mBio. 2019 Jun 25;10(3):
pubmed: 31239380
J Mol Microbiol Biotechnol. 2005;9(3-4):132-46
pubmed: 16415587
Science. 2009 Jan 16;323(5912):379-82
pubmed: 19150844
PLoS Comput Biol. 2014 Oct 23;10(10):e1003898
pubmed: 25340524
Future Microbiol. 2010 Aug;5(8):1203-18
pubmed: 20722599
mSystems. 2021 Jun 29;6(3):e0118620
pubmed: 34058098
J Am Chem Soc. 2012 Jun 27;134(25):10419-27
pubmed: 22631217
Genome Res. 2017 May;27(5):824-834
pubmed: 28298430
Mar Environ Res. 2009 Mar;67(2):83-8
pubmed: 19131100
Bioinformatics. 2002;18 Suppl 1:S225-32
pubmed: 12169551
Nat Rev Microbiol. 2005 Sep;3(9):722-32
pubmed: 16138100
BMC Bioinformatics. 2010 May 28;11:289
pubmed: 20509878
Nat Microbiol. 2016 Oct 24;2:16193
pubmed: 27775698
Trends Microbiol. 2005 Sep;13(9):439-48
pubmed: 16054816
Mol Ecol Resour. 2015 Nov;15(6):1403-14
pubmed: 25732605
Curr Microbiol. 2011 Jan;62(1):198-208
pubmed: 20577742
J Bacteriol. 2009 Apr;191(8):2423-30
pubmed: 19201793
Appl Environ Microbiol. 1996 Feb;62(2):316-22
pubmed: 8593035
Genome Res. 2015 Jul;25(7):1043-55
pubmed: 25977477
PLoS One. 2016 Sep 28;11(9):e0162834
pubmed: 27683199
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Front Bioinform. 2022 Jul 22;2:918853
pubmed: 36304272
Nucleic Acids Res. 2000 Jan 1;28(1):33-6
pubmed: 10592175
J Gen Microbiol. 1986 Mar;132(3):797-806
pubmed: 3525743
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17516-21
pubmed: 18987310
Genome Announc. 2015 Jun 18;3(3):
pubmed: 26089430
PLoS One. 2014 Aug 18;9(8):e104959
pubmed: 25133584
Trends Ecol Evol. 2011 Apr;26(4):202-9
pubmed: 21371775
Evolution. 1985 Jul;39(4):783-791
pubmed: 28561359
Science. 2009 Oct 9;326(5950):236-7
pubmed: 19815760
Int J Syst Evol Microbiol. 2017 Apr;67(4):1085-1094
pubmed: 27926819
Bioinformatics. 2011 Feb 15;27(4):592-3
pubmed: 21169378
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Science. 2008 May 23;320(5879):1039-43
pubmed: 18497288
Trends Microbiol. 2010 Oct;18(10):471-8
pubmed: 20656493
Environ Microbiol. 2011 Mar;13(3):758-74
pubmed: 21134098
Microb Genom. 2018 Apr;4(4):
pubmed: 29633935
Stand Genomic Sci. 2011 Dec 31;5(3):311-30
pubmed: 22675582
Plant Cell Physiol. 2019 Oct 1;60(10):2180-2192
pubmed: 31198965
Curr Biol. 2007 May 15;17(10):881-6
pubmed: 17493812
Appl Environ Microbiol. 1994 Dec;60(12):4461-7
pubmed: 7529016
J Exp Bot. 2008;59(7):1525-41
pubmed: 18245799
Biometals. 2011 Aug;24(4):687-707
pubmed: 21301930
Nature. 1998 Mar 26;392(6674):353-8
pubmed: 9537320
Ecol Lett. 2012 Oct;15(10):1071-82
pubmed: 22747703
Microbes Environ. 2019;34(3):223-225
pubmed: 31554776
Bioinformatics. 2004 Jan 22;20(2):289-90
pubmed: 14734327
Ann N Y Acad Sci. 2015 Dec;1360:16-35
pubmed: 25866055
Appl Environ Microbiol. 2019 Dec 13;86(1):
pubmed: 31628148
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8505-8514
pubmed: 30962361
Genomics. 2021 May;113(3):1416-1427
pubmed: 33722656
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Mol Microbiol. 2019 Oct;112(4):1284-1307
pubmed: 31389636
Eur J Protistol. 2018 Feb;62:43-55
pubmed: 29202309
Nat Biotechnol. 2017 Aug 8;35(8):725-731
pubmed: 28787424
Mol Biol Evol. 2017 Aug 1;34(8):2115-2122
pubmed: 28460117
Brief Bioinform. 2010 Jan;11(1):40-79
pubmed: 19955237
FEMS Microbiol Lett. 2020 Jul 1;367(13):
pubmed: 32589217
Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314
pubmed: 30418610
PeerJ. 2015 Aug 27;3:e1165
pubmed: 26336640
J Eukaryot Microbiol. 2022 Sep;69(5):e12886
pubmed: 35006645
Sci Adv. 2020 Aug 26;6(35):eaba7637
pubmed: 32923628
J Bacteriol. 1990 Jun;172(6):3358-66
pubmed: 2188959

Auteurs

Salvador Espada-Hinojosa (S)

Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.

Clarissa Karthäuser (C)

Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Abhishek Srivastava (A)

Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.

Lukas Schuster (L)

Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.

Teresa Winter (T)

Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.

André Luiz de Oliveira (AL)

Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.

Frederik Schulz (F)

Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.

Matthias Horn (M)

Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.

Stefan Sievert (S)

Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Monika Bright (M)

Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH