[Ketamine: a neuropsychotropic drug with an innovative mechanism of action].
La kétamine : un neuropsychotrope au mécanisme d’action innovant.
antidepressant
antidépresseur
cortex préfrontal médian
excitation/glutamate
inhibition/GABA
ketamine
kétamine
medial prefrontal cortex
serotonin
sérotonine
Journal
Biologie aujourd'hui
ISSN: 2105-0686
Titre abrégé: Biol Aujourdhui
Pays: France
ID NLM: 101544020
Informations de publication
Date de publication:
2023
2023
Historique:
received:
22
04
2023
medline:
30
11
2023
pubmed:
29
11
2023
entrez:
29
11
2023
Statut:
ppublish
Résumé
Ketamine, a non-competitive antagonist of the N-methyl-D-aspartate-glutamate receptor (R-NMDA), has a rapid (from 24 h post-dose) and prolonged (up to one week) antidepressant effect in treatment resistant depression and in rodent models of anxiety/depression. Arguments regarding its cellular and molecular mechanisms underlying its antidepressant activity mainly come from animal studies. However, debates still persist on the structural remodeling of frontocortical/hippocampal neurons and the role of excitatory/inhibitory neurotransmitters involved in its behavioral effect. Neurochemical and behavioral changes are maintained 24 h after administration of ketamine, well beyond its plasma elimination half-life. The glutamatergic pyramidal cells of the medial prefrontal cortex are primarily implicated in the therapeutic effects of ketamine. Advances in knowledge of the consequences of R-NMDA blockade allowed to specify the underlying mechanisms involving the activation of AMPA glutamate receptors, which triggers a cascade of intracellular events dependent on the mechanistic target of rapamycin, brain-derived neurotrophic factor, and synaptic protein synthesis facilitating synaptic plasticity (number of dendritic spines, synaptogenesis). This review focuses on abnormalities of neurotransmitter systems involved in major depressive disorders, their potential impact on neural circuitry and beneficial effects of ketamine. Recent preclinical data pave the way for future studies to better clarify the mechanism of action of fast-acting antidepressant drugs for the development of novel, more effective therapies. La kétamine : un neuropsychotrope au mécanisme d’action innovant. La kétamine, un antagoniste non compétitif du récepteur N-méthyl-D-aspartate (R-NMDA) du glutamate, possède un effet antidépresseur rapide (dès 24 h post-dose) et prolongé (jusqu’à une semaine) dans la dépression résistante au traitement par des antidépresseurs « classiques » et dans les modèles rongeurs d’anxiété/dépression. Les arguments concernant ses mécanismes cellulaires et moléculaires sous-tendant son activité antidépressive viennent principalement d’études animales. Des débats persistent cependant sur le remodelage structurel des neurones frontocorticaux/hippocampiques et sur le rôle des neurotransmetteurs excitateurs/inhibiteurs impliqués dans cet effet comportemental observé chez l’animal. Les modifications neurochimiques et comportementales se maintiennent 24 h après l’administration de la kétamine, bien au-delà de sa demi-vie d’élimination plasmatique. L’avancée des connaissances sur les conséquences du blocage du R-NMDA permet de préciser les mécanismes sous-jacents impliquant (i) l’activation des récepteurs AMPA du glutamate, qui déclenche une cascade d’évènements intracellulaires dépendants de la cible mécanistique de la rapamycine, (ii) le facteur neurotrophique dérivé du cerveau et (iii) la synthèse de protéines synaptiques facilitant la plasticité synaptique (nombre d’épines dendritiques, synaptogenèse). Les cellules pyramidales glutamatergiques du cortex préfrontal médian sont principalement impliquées dans les effets thérapeutiques de la kétamine. La présente revue se concentre sur les anomalies des systèmes de neurotransmetteurs associées aux troubles dépressifs caractérisés, leur impact potentiel sur les circuits neuronaux et les effets bénéfiques de la kétamine. Les résultats d’études précliniques récentes devraient aider à orienter les futures études pour mieux préciser le mécanisme d’action des antidépresseurs d’action rapide et permettre ainsi le développement de nouvelles thérapies plus efficaces.
Autres résumés
Type: Publisher
(fre)
La kétamine : un neuropsychotrope au mécanisme d’action innovant.
Identifiants
pubmed: 38018940
doi: 10.1051/jbio/2023026
pii: jbio230026
doi:
Substances chimiques
Ketamine
690G0D6V8H
Pharmaceutical Preparations
0
N-Methylaspartate
6384-92-5
Antidepressive Agents
0
Glutamic Acid
3KX376GY7L
Receptors, AMPA
0
Types de publication
Review
English Abstract
Journal Article
Langues
fre
Sous-ensembles de citation
IM
Pagination
133-144Informations de copyright
© Société de Biologie, 2023.
Références
Abdallah, C.G. (2017). What’s the buzz about hydroxynorketamine? Is it the history, the story, the debate, or the promise? Biol Psychiatry, 81, e61-e63.
Abdallah, C.G., De Feyter, H.M., Averill, L.A., Jiang, L., Averill, C.L., Chowdhury, G.M.I., Purohit, P., de Graaf, R.A., Esterlis, I., Juchem, C., Pittman, B.P., Krystal, J.H., Rothman, D.L., Sanacora, G., Mason, G.F. (2018). The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology, 43, 2154-2160.
Abdallah, C.G., Averill, L.A., Gueorguieva, R., Goktas, S., Purohit, P., Ranganathan, M., Sherif, M., Ahn, K.H., D’Souza, D.C., Formica, R., Southwick, S.M., Duman, R.S., Sanacora, G., Krystal, J.H. (2020). Modulation of the antidepressant effects of ketamine by the mTORC1 inhibitor rapamycin. Neuropsychopharmacology, 45, 990-997.
Ago, Y., Tanabe, W., Higuchi, M., Tsukada, S., Tanaka, T., Yamaguchi, T., Igarashi, H., Yokoyama, R., Seiriki, K., Kasai, A., Nakazawa, T., Nakagawa, S., Hashimoto, K., Hashimoto, H. (2019). (R)-ketamine induces a greater increase in prefrontal 5-HT release than (S)-ketamine and ketamine metabolites via an AMPA receptor-independent mechanism. Int J Neuropsychopharmacol, 22, 665-674.
Amargós-Bosch, M., López-Gil, X., Artigas, F., Adell, A. (2006). Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Int J Neuropsychopharmacol, 9, 565-573.
Autry, A.E., Adachi, M., Nosyreva, E., Na, E.S., Los, M.F., Cheng, P.F., Kavalali, E.T., Monteggia, L.M. (2011). NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 475, 91-95.
Averill, L.A., Averill, C.L., Gueorguieva, R., Fouda, S., Sherif, M., Ahn, K.H., Ranganathan, M., D’Souza, D.C., Southwick, S.M., Sanacora, G., Duman, R.S., Krystal, J.H., Abdallah, C.G. (2022). mTORC1 inhibitor effects on rapid ketamine-induced reductions in suicidal ideation in patients with treatment-resistant depression. J Affect Disord, 303, 91-97.
Bahji, A., Vazquez, G.H., Zarate, C.A., Jr. (2021). Comparative efficacy of racemic ketamine and esketamine for depression: A systematic review and meta-analysis. J Affect Disord, 278, 542-555.
Barrett, W., Buxhoeveden, M., Dhillon, S. (2020). Ketamine: A versatile tool for anesthesia and analgesia. Curr Opin Anaesthesiol, 33, 633-638.
Berman, R.M., Cappiello, A., Anand, A., Oren, D.A., Heninger, G.R., Charney, D.S., Krystal, J.H. (2000). Antidepressant effects of ketamine in depressed patients. Biol Psychiatry, 47, 351-354.
Bessa, J.M., Ferreira, D., Melo, I., Marques, F., Cerqueira, J.J., Palha, J.A., Almeida, O.F., Sousa, N. (2009). The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry, 14, 764-773.
Boldrini, M., Hen, R., Underwood, M.D., Rosoklija, G.B., Dwork, A.J., Mann, J.J., Arango, V. (2012). Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry, 72, 562-571.
Boldrini, M., Fulmore, C.A., Tartt, A.N., Simeon, L.R., Pavlova, I., Poposka, V., Rosoklija, G.B., Stankov, A., Arango, V., Dwork, A.J., Hen, R., Mann, J.J. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 22, 589-599.e5.
Bonaventura, J., Lam, S., Carlton, M., Boehm, M.A., Gomez, J.L., Solís, O., Sánchez-Soto, M., Morris, P.J., Fredriksson, I., Thomas, C.J., Sibley, D.R., Shaham, Y., Zarate, C.A., Michaelides, M. (2021). Pharmacological and behavioral divergence of ketamine enantiomers: Implications for abuse liability. Mol Psychiatry, 26, 6704-6722.
Bonaventura, J., Lam, S., Carlton, M., Boehm, M., Gomez, J.L., Solís, O., Sánchez-Soto, M., Morris, P.J., Fredriksson, I., Thomas, C.J., Sibley, D.R., Shaham, Y., Zarate, C.A., Jr., Michaelides, M. (2022). Time will tell. Reply to “Comments to pharmacological and behavioral divergence of ketamine enantiomers by Jordi Bonaventura et al.” by Chen et al. Mol Psychiatry, 27, 1863-1865.
Bottemanne, H., Bonnard, E., Claret, A., Petit, A.C., Gaillard, R., Fossati, P. (2020). Ketamine and monoamine oxidase inhibitor combination: Utility, safety, efficacy? J Clin Psychopharmacol, 40, 636-638.
Bottemanne, H., Claret, A., Fossati, P. (2021). Ketamine, psilocybin, and rapid acting antidepressant: New promise for psychiatry? Encephale, 47, 171-178.
Canuso, C.M., Singh, J.B., Fedgchin, M., Alphs, L., Lane, R., Lim, P., Pinter, C., Hough, D., Sanacora, G., Manji, H., Drevets, W.C. (2018). Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: Results of a double-blind, randomized, placebo-controlled study. Am J Psychiatry, 175, 620-630.
Carreno, F.R., Donegan, J.J., Boley, A.M., Shah, A., DeGuzman, M., Frazer, A., Lodge, D.J. (2016). Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Mol Psychiatry, 21, 1298-1308.
Celada, P., Lladó-Pelfort, L., Santana, N., Kargieman, L., Troyano-Rodriguez, E., Riga, M.S., Artigas, F. (2013). Disruption of thalamocortical activity in schizophrenia models: Relevance to antipsychotic drug action. Int J Neuropsychopharmacol, 16, 2145-2163.
Chang, L., Zhang, K., Pu, Y., Qu, Y., Wang, S.M., Xiong, Z., Ren, Q., Dong, C., Fujita, Y., Hashimoto, K. (2019). Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharmacol Biochem Behav, 181, 53-59.
Chazan, S., Ekstein, M.P., Marouani, N., Weinbroum, A.A. (2008). Ketamine for acute and subacute pain in opioid-tolerant patients. J Opioid, 4, 173-180.
Chowdhury, G.M., Behar, K.L., Cho, W., Thomas, M.A., Rothman, D.L., Sanacora, G. (2012).
Chowdhury, G.M., Zhang, J., Thomas, M., Banasr, M., Ma, X., Pittman, B., Bristow, L., Schaeffer, E., Duman, R.S., Rothman, D.L., Behar, K.L., Sanacora, G. (2017). Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol Psychiatry, 22, 120-126.
Corriger, A., Pickering, G. (2019). Ketamine and depression: A narrative review. Drug Des Devel Ther, 13, 3051-3067.
Daly, E.J., Singh, J.B., Fedgchin, M., Cooper, K., Lim, P., Shelton, R.C., Thase, M.E., Winokur, A., Van Nueten, L., Manji, H., Drevets, W.C. (2018). Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: A randomized clinical trial. JAMA Psychiatry, 75, 139-148.
David, D.J., Samuels, B.A., Rainer, Q., Wang, J.W., Marsteller, D., Mendez, I., Drew, M., Craig, D.A., Guiard, B.P., Guilloux, J.P., Artymyshyn, R.P., Gardier, A.M., Gerald, C., Antonijevic, I.A., Leonardo, E.D., Hen, R. (2009). Neurogenesis-dependent and −independent effects of fluoxetine in an animal model of anxiety/depression. Neuron, 62, 479-493.
Domino, E.F. (2010). Taming the ketamine tiger. 1965. Anesthesiology, 113, 678-684.
Duman, R.S., Li, N., Liu, R.J., Duric, V., Aghajanian, G. (2012). Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology, 62, 35-41.
Duman, R.S., Sanacora, G., Krystal, J.H. (2019). Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 102, 75-90.
Ebert, B., Mikkelsen, S., Thorkildsen, C., Borgbjerg, F.M. (1997). Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharmacol, 333, 99-104.
Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D.A., Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4, 1313-1317.
Erritzoe, D., Godlewska, B.R., Rizzo, G., Searle, G.E., Agnorelli, C., Lewis, Y., Ashok, A.H., Colasanti, A., Boura, I., Farrell, C., Parfitt, H., Howes, O., Passchier, J., Gunn, R.N., Politis, M., Nutt, D.J., Cowen, P.J., Knudsen, G.M., Rabiner, E.A. (2022). Brain serotonin release is reduced in patients with depression: A [(11)C]Cimbi-36 positron emission tomography study with a d-Amphetamine challenge. Biol Psychiatry, 93, 1089-1098.
Farmer, C.A., Gilbert, J.R., Moaddel, R., George, J., Adeojo, L., Lovett, J., Nugent, A.C., Kadriu, B., Yuan, P., Gould, T.D., Park, L.T., Zarate, C.A. (2020). Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology, 45, 1398-1404.
Fuchs, T., Jefferson, S.J., Hooper, A., Yee, P.H., Maguire, J., Luscher, B. (2017). Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol Psychiatry, 22, 920-930.
Gaynes, B.N., Rush, A.J., Trivedi, M.H., Wisniewski, S.R., Spencer, D., Fava, M. (2008). The STAR*D study: Treating depression in the real world. Cleve Clin J Med, 75, 57-66.
Gerhard, D.M., Pothula, S., Liu, R.J., Wu, M., Li, X.Y., Girgenti, M.J., Taylor, S.R., Duman, C.H., Delpire, E., Picciotto, M., Wohleb, E.S., Duman, R.S. (2020). GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Invest, 130, 1336-1349.
Gideons, E.S., Kavalali, E.T., Monteggia, L.M. (2014). Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci USA, 111, 8649-8654.
Gould, T.D., Zarate, C.A., Jr., Thompson, S.M. (2019). Molecular pharmacology and neurobiology of rapid-acting antidepressants. Annu Rev Pharmacol Toxicol, 59, 213-236.
Hare, B.D., Duman, R.S. (2020). Prefrontal cortex circuits in depression and anxiety: Contribution of discrete neuronal populations and target regions. Mol Psychiatry, 25, 2742-2758.
Hare, B.D., Ghosal, S., Duman, R.S. (2017). Rapid acting antidepressants in chronic stress models: Molecular and cellular mechanisms. Chronic Stress (Thousand Oaks), 1, https://doi.org/10.1177/2470547017697317.
Hare, B.D., Pothula, S., DiLeone, R.J., Duman, R.S. (2020). Ketamine increases vmPFC activity: Effects of (R)- and (S)-stereoisomers and (2R,6R)-hydroxynorketamine metabolite. Neuropharmacology, 166, 107947.
Hasler, G., Fromm, S., Carlson, P.J., Luckenbaugh, D.A., Waldeck, T., Geraci, M., Roiser, J.P., Neumeister, A., Meyers, N., Charney, D.S., Drevets, W.C. (2008). Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry, 65, 521-531.
Helm, M.S., Dankovich, T.M., Mandad, S., Rammner, B., Jähne, S., Salimi, V., Koerbs, C., Leibrandt, R., Urlaub, H., Schikorski, T., Rizzoli, S.O. (2021). A large-scale nanoscopy and biochemistry analysis of postsynaptic dendritic spines. Nat Neurosci, 24, 1151-1162.
Highland, J.N., Morris, P.J., Konrath, K.M., Riggs, L.M., Hagen, N.R., Zanos, P., Powels, C.F., Moaddel, R., Thomas, C.J., Wang, A.Q., Gould, T.D. (2022). Hydroxynorketamine pharmacokinetics and antidepressant behavioral effects of (2,6)- and (5R)-Methyl-(2R,6R)-hydroxynorketamines. ACS Chem Neurosci, 13, 510-523.
Jawad, M.Y., Di Vincenzo, J.D., Ceban, F., Jaberi, S., Lui, L.M.W., Gillissie, E.S., Alnafeesi, Y., Rosenblat, J.D., McIntyre, R.S. (2022). The efficacy and safety of adjunctive intranasal esketamine treatment in major depressive disorder: A systematic review and meta-analysis. Expert Opin Drug Saf, 21, 841-852.
Jelen, L.A., Young, A.H., Stone, J.M. (2021). Ketamine: A tale of two enantiomers. J Psychopharmacol, 35, 109-123.
Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N., Nakahara, H. (2003). Structure-stability-function relationships of dendritic spines. Trends Neurosci, 26, 360-368.
Kempermann, G., Kuhn, H.G., Gage, F.H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci, 18, 3206-3212.
Kim, M.J., Dunah, A.W., Wang, Y.T., Sheng, M. (2005). Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron, 46, 745-760.
Kim, B., Kim, C.Y., Hong, J.P., Kim, S.Y., Lee, C., Joo, Y.H. (2008). Brain-derived neurotrophic factor val/met polymorphism and bipolar disorder. Neuropsychobiology, 58, 97-103.
Kohtala, S. (2021). Ketamine-50 years in use: From anesthesia to rapid antidepressant effects and neurobiological mechanisms. Pharmacol Rep, 73, 323-345.
Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D., Heninger, G.R., Bowers, M.B., Jr., Charney, D.S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry, 51, 199-214.
Lapidus, K.A., Levitch, C.F., Perez, A.M., Brallier, J.W., Parides, M.K., Soleimani, L., Feder, A., Iosifescu, D.V., Charney, D.S., Murrough, J.W. (2014). A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry, 76, 970-976.
Leal, G.C., Souza-Marques, B., Mello, R.P., Bandeira, I.D., Caliman-Fontes, A.T., Carneiro, B.A., Faria-Guimarães, D., Guerreiro-Costa, L.N.F., Jesus-Nunes, A.P., Silva, S.S., Lins-Silva, D.H., Fontes, M.A., Alves-Pereira, R., Cordeiro, V., Rugieri-Pacheco, S., Santos-Lima, C., Correia-Melo, F.S., Vieira, F., Sanacora, G., Lacerda, A.L.T., Quarantini, L.C. (2023). Arketamine as adjunctive therapy for treatment-resistant depression: A placebo-controlled pilot study. J Affect Disord, 330, 7-15.
Li, N., Lee, B., Liu, R.J., Banasr, M., Dwyer, J.M., Iwata, M., Li, X.Y., Aghajanian, G., Duman, R.S. (2010). mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 329, 959-964.
Li, N., Liu, R.J., Dwyer, J.M., Banasr, M., Lee, B., Son, H., Li, X.Y., Aghajanian, G., Duman, R.S. (2011). Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry, 69, 754-761.
Lin, P.-Y., Ma, Z.Z., Mahgoub, M., Kavalali, E.T., Monteggia, L.M. (2021). A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep, 36, 109513.
Liu, R.J., Lee, F.S., Li, X.Y., Bambico, F., Duman, R.S., Aghajanian, G.K. (2012). Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry, 71, 996-1005.
Liu, R.J., Fuchikami, M., Dwyer, J.M., Lepack, A.E., Duman, R.S., Aghajanian, G.K. (2013). GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology, 38, 2268-2277.
López-Gil, X., Babot, Z., Amargós-Bosch, M., Suñol, C., Artigas, F., Adell, A. (2007). Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology, 32, 2087-2097.
Lord, B., Wintmolders, C., Langlois, X., Nguyen, L., Lovenberg, T., Bonaventure, P. (2013). Comparison of the ex vivo receptor occupancy profile of ketamine to several NMDA receptor antagonists in mouse hippocampus. Eur J Pharmacol, 715, 21-25.
Lorrain, D.S., Baccei, C.S., Bristow, L.J., Anderson, J.J., Varney, M.A. (2003). Effects of ketamine and n-methyl-d-aspartate on glutamate and dopamine release in the rat prefrontal cortex: Modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience, 117, 697-706.
Lumsden, E.W., Troppoli, T.A., Myers, S.J., Zanos, P., Aracava, Y., Kehr, J., Lovett, J., Kim, S., Wang, F.H., Schmidt, S., Jenne, C.E., Yuan, P., Morris, P.J., Thomas, C.J., Zarate, C.A., Jr., Moaddel, R., Traynelis, S.F., Pereira, E.F.R., Thompson, S.M., Albuquerque, E.X., Gould, T.D. (2019). Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function. Proc Natl Acad Sci USA, 116, 5160-5169.
Maeng, S., Zarate, C.A., Jr., Du, J., Schloesser, R.J., McCammon, J., Chen, G., Manji, H.K. (2008). Cellular mechanisms underlying the antidepressant effects of ketamine: Role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry, 63, 349-352.
Marcantoni, W.S., Akoumba, B.S., Wassef, M., Mayrand, J., Lai, H., Richard-Devantoy, S., Beauchamp, S. (2020). A systematic review and meta-analysis of the efficacy of intravenous ketamine infusion for treatment resistant depression: January 2009–January 2019. J Affect Disord, 277, 831-841.
Marland, S., Ellerton, J., Andolfatto, G., Strapazzon, G., Thomassen, O., Brandner, B., Weatherall, A., Paal, P. (2013). Ketamine: Use in anesthesia. CNS Neurosci Ther, 19, 381-389.
Matsuzaki, M., Ellis-Davies, G.C., Nemoto, T., Miyashita, Y., Iino, M., Kasai, H. (2001). Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci, 4, 1086-1092.
Meiering, M.S., Weigner, D., Gärtner, M., Schäfer, T., Grimm, S. (2022). Does route of administration affect antidepressant efficacy of ketamine? A meta-analysis of double-blind randomized controlled trials comparing intravenous and intranasal administration. J Psychiatr Res, 156, 639-646.
Miller, O.H., Moran, J.T., Hall, B.J. (2016). Two cellular hypotheses explaining the initiation of ketamine’s antidepressant actions: Direct inhibition and disinhibition. Neuropharmacology, 100, 17-26.
Mitchell, A.J., Chan, M., Bhatti, H., Halton, M., Grassi, L., Johansen, C., Meader, N. (2011). Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: A meta-analysis of 94 interview-based studies. Lancet Oncol, 12, 160-174.
Moda-Sava, R.N., Murdock, M.H., Parekh, P.K., Fetcho, R.N., Huang, B.S., Huynh, T.N., Witztum, J., Shaver, D.C., Rosenthal, D.L., Alway, E.J., Lopez, K., Meng, Y., Nellissen, L., Grosenick, L., Milner, T.A., Deisseroth, K., Bito, H., Kasai, H., Liston, C. (2019). Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science, 364(6436), eaat8078.
Moghaddam, B., Adams, B., Verma, A., Daly, D. (1997). Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci, 17, 2921-2927.
Motov, S., Rockoff, B., Cohen, V., Pushkar, I., Likourezos, A., McKay, C., Soleyman-Zomalan, E., Homel, P., Terentiev, V., Fromm, C. (2015). Intravenous subdissociative-dose ketamine versus morphine for analgesia in the Emergency Department: A randomized controlled trial. Ann Emerg Med, 66, 222-229.
Murray, F., Kennedy, J., Hutson, P.H., Elliot, J., Huscroft, I., Mohnen, K., Russell, M.G., Grimwood, S. (2000). Modulation of [
Murrough, J.W., Iosifescu, D.V., Chang, L.C., Al Jurdi, R.K., Green, C.E., Perez, A.M., Iqbal, S., Pillemer, S., Foulkes, A., Shah, A., Charney, D.S., Mathew, S.J. (2013). Antidepressant efficacy of ketamine in treatment-resistant major depression: A two-site randomized controlled trial. Am J Psychiatry, 170, 1134-1142.
Naegelin, Y., Dingsdale, H., Säuberli, K., Schädelin, S., Kappos, L., Barde, Y.A. (2018). Measuring and validating the levels of brain-derived neurotrophic factor in human serum. eNeuro, 5(2), e0419-17.
Neumeister, A., Nugent, A.C., Waldeck, T., Geraci, M., Schwarz, M., Bonne, O., Bain, E.E., Luckenbaugh, D.A., Herscovitch, P., Charney, D.S., Drevets, W.C. (2004). Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry, 61, 765-773.
Nguyen, T.M.L., Defaix, C., Mendez-David, I., Tritschler, L., Etting, I., Alvarez, J.C., Choucha, W., Colle, R., Corruble, E., David, D.J., Gardier, A.M. (2023). Intranasal (R,S)-ketamine delivery induces sustained antidepressant effects associated with changes in cortical balance of excitatory/inhibitory synaptic activity. Neuropharmacology, 225, 109357.
Nibuya, M., Morinobu, S., Duman, R.S. (1995). Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci, 15, 7539-7547.
Niciu, M.J., Kelmendi, B., Sanacora, G. (2012). Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav, 100, 656-664.
Parekh, P.K., Johnson, S.B., Liston, C. (2022). Synaptic mechanisms regulating mood state transitions in depression. Annu Rev Neurosci, 45, 581-601.
Pham, T.H., Gardier, A.M. (2019). Fast-acting antidepressant activity of ketamine: Highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther, 199, 58-90.
Pham, T.H., Mendez-David, I., Defaix, C., Guiard, B.P., Tritschler, L., David, D.J., Gardier, A.M. (2017). Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice. Neuropharmacology, 112, 198-209.
Pham, T.H., Defaix, C., Xu, X., Deng, S.X., Fabresse, N., Alvarez, J.C., Landry, D.W., Brachman, R.A., Denny, C.A., Gardier, A.M. (2018). Common neurotransmission recruited in (R,S)-ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects. Biol Psychiatry, 84, e3-e6.
Pham, T.H., Defaix, C., Nguyen, T.M.L., Mendez-David, I., Tritschler, L., David, D.J., Gardier, A.M. (2020). Cortical and raphe GABAA, AMPA receptors and glial GLT-1 glutamate transporter contribute to the sustained antidepressant activity of ketamine. Pharmacol Biochem Behav, 192, 172913.
Pothula, S., Kato, T., Liu, R.-J., Wu, M., Gerhard, D., Shinohara, R., Sliby, A.-N., Chowdhury, G.M.I., Behar, K.L., Sanacora, G., Banerjee, P., Duman, R.S. (2021). Cell-type specific modulation of NMDA receptors triggers antidepressant actions. Mol Psychiatry, 26, 5097-5111.
Pozzi, L., Dorocic, I.P., Wang, X., Carlén, M., Meletis, K. (2014). Mice lacking NMDA receptors in parvalbumin neurons display normal depression-related behavior and response to antidepressant action of NMDAR antagonists. PLoS One, 9, e83879.
Prins, J., Olivier, B., Korte, S.M. (2011). Triple reuptake inhibitors for treating subtypes of major depressive disorder: The monoamine hypothesis revisited. Expert Opin Investig Drugs, 20, 1107-1130.
Razoux, F., Garcia, R., Léna, I. (2007). Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Neuropsychopharmacology, 32, 719-727.
Ruhé, H.G., Mason, N.S., Schene, A.H. (2007). Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Mol Psychiatry, 12, 331-359.
Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., Hen, R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805-809.
Shim, I. (2022). Distinct functions of S-ketamine and R-ketamine in mediating biobehavioral processes of drug dependency: Comments on Bonaventura et al. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01629-0.
Tartt, A.N., Mariani, M.B., Hen, R., Mann, J.J., Boldrini, M. (2022). Dysregulation of adult hippocampal neuroplasticity in major depression: Pathogenesis and therapeutic implications. Mol Psychiatry, 27, 2689-2699.
Tizabi, Y., Bhatti, B.H., Manaye, K.F., Das, J.R., Akinfiresoye, L. (2012) Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar/Kyoto rats. Neuroscience, 213, 72-80.
Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., Dingledine, R. (2010). Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev, 62, 405-496.
White, P.F., Schüttler, J., Shafer, A., Stanski, D.R., Horai, Y., Trevor, A.J. (1985). Comparative pharmacology of the ketamine isomers. Studies in volunteers. Br J Anaesth, 57, 197-203.
Wu, H., Savalia, N.K., Kwan, A.C. (2021). Ketamine for a boost of neural plasticity: How, but also when? Biol Psychiatry, 89, 1030-1032.
Yang, C., Ren, Q., Qu, Y., Zhang, J.C., Ma, M., Dong, C., Hashimoto, K. (2018). Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biol Psychiatry, 83, 18-28.
Zanos, P., Moaddel, R., Morris, P.J., Georgiou, P., Fischell, J., Elmer, G.I., Alkondon, M., Yuan, P., Pribut, H.J., Singh, N.S., Dossou, K.S., Fang, Y., Huang, X.P., Mayo, C.L., Wainer, I.W., Albuquerque, E.X., Thompson, S.M., Thomas, C.J., Zarate, C.A., Jr., Gould, T.D. (2016). NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 533, 481-486.
Zanos, P., Highland, J.N., Stewart, B.W., Georgiou, P., Jenne, C.E., Lovett, J., Morris, P.J., Thomas, C.J., Moaddel, R., Zarate, C.A., Gould, T.D. (2019). (2R,6R)-hydroxynorketamine exerts mGlu2 receptor-dependent antidepressant actions. Proc Natl Acad Sci USA, 116, 6441-6450.
Zarate, C.A., Jr., Singh, J.B., Carlson, P.J., Brutsche, N.E., Ameli, R., Luckenbaugh, D.A., Charney, D.S., Manji, H.K. (2006). A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry, 63, 856-864.
Zheng, W., Zhou, Y.L., Liu, W.J., Wang, C.Y., Zhan, Y.N., Lan, X.F., Zhang, B., Ning, Y.P. (2020). A preliminary study of adjunctive ketamine for treatment-resistant bipolar depression. J Affect Disord, 275, 38-43.