Association of ABCG5 and ABCG8 Transporters with Sitosterolemia.


Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2024
Historique:
medline: 4 12 2023
pubmed: 1 12 2023
entrez: 30 11 2023
Statut: ppublish

Résumé

Sitosterolemia is a rare genetic lipid disorder, mainly characterized by the accumulation of dietary xenosterols in plasma and tissues. It is caused by inactivating mutations in either ABCG5 or ABCG8 subunits, a subfamily-G ATP-binding cassette (ABCG) transporters. ABCG5/G8 encodes a pair of ABC half transporters that form a heterodimer (G5G8). This heterodimeric ATP-binding cassette (ABC) sterol transporter, ABCG5/G8, is responsible for the hepatobiliary and transintestinal secretion of cholesterol and dietary plant sterols to the surface of hepatocytes and enterocytes, promoting the secretion of cholesterol and xenosterols into the bile and the intestinal lumen. In this way, ABCG5/G8 function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Here, we review the biological characteristics and function of ABCG5/G8, and how the mutations of ABCG5/G8 can cause sitosterolemia, a loss-of-function disorder characterized by plant sterol accumulation and premature atherosclerosis, among other features.

Identifiants

pubmed: 38036873
doi: 10.1007/978-3-031-43883-7_2
doi:

Substances chimiques

Lipoproteins 0
ATP Binding Cassette Transporter, Subfamily G, Member 5 0
ATP Binding Cassette Transporter, Subfamily G, Member 8 0
Phytosterols 0
Cholesterol 97C5T2UQ7J
ATP-Binding Cassette Transporters 0
Adenosine Triphosphate 8L70Q75FXE

Types de publication

Review Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

31-42

Informations de copyright

© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Abumrad NA, Sfeir Z, Connelly MA et al (2000) Lipid transporters: membrane transport systems for cholesterol and fatty acids. Curr Opin Clin Nutri Metab Care 3:255–262
doi: 10.1097/00075197-200007000-00003
Acalovschi M, Ciocan A, Mostean O et al (2006) Are plasma lipid levels related to ABCG5/ABCG8 polymorphisms? A preliminary study in siblings with gallstones. Eur J Intern Med 17:490–494
pubmed: 17098593 doi: 10.1016/j.ejim.2006.04.012
Alam A, Locher KP (2023) Structure and mechanism of human ABC transporters. Annu Rev Biophys 52:275–300
pubmed: 36737602 doi: 10.1146/annurev-biophys-111622-091232
Bazerbachi F, Conboy EE, Mounajjed T et al (2016) Cryptogenic cirrhosis and Sitosterolemia: a treatable disease if identified but fatal if missed. Ann Hepatol 16:970–978
doi: 10.5604/01.3001.0010.5290
Beaty TH, Kwiterovich PO, Khoury MJ et al (1986) Genetic analysis of plasma sitosterol, apoprotein B, and lipoproteins in a large Amish pedigree with sitosterolemia. Am J Hum Genet 38:492–504
pubmed: 3706300 pmcid: 1684791
Berge KE, Tian H, Graf GA et al (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775
pubmed: 11099417 doi: 10.1126/science.290.5497.1771
Bhattacharyya AK, Connor WE (1974) Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest 53:1033–1043
pubmed: 4360855 pmcid: 333088 doi: 10.1172/JCI107640
Bhattacharyya AK, Connor WE, Lin DS et al (1991) Sluggish sitosterol turnover and hepatic failure to excrete sitosterol into bile cause expansion of body pool of sitosterol in patients with sitosterolemia and xanthomatosis. Arterioscler Thromb AJ Vasc Biol/Am Heart Assoc 11:1287–1294
Bilsing FL, Anlauf MT, Hachani E et al (2023) ABC transporters in bacterial nanomachineries. Int J Mol Sci 24:6227
pubmed: 37047196 pmcid: 10094684 doi: 10.3390/ijms24076227
Blattner FR, Plunkett G, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462
pubmed: 9278503 doi: 10.1126/science.277.5331.1453
Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592
pubmed: 12045106 doi: 10.1146/annurev.biochem.71.102301.093055
Brown JM, Yu L (2010) Protein mediators of sterol transport across intestinal brush border membrane. Subcell Biochem 51:337–380
pubmed: 20213550 pmcid: 3307050 doi: 10.1007/978-90-481-8622-8_12
Buch S, Schafmayer C, Völzke H et al (2007) A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat Genet 39:995–999
pubmed: 17632509 doi: 10.1038/ng2101
Chen ZC, Shin SJ, Kuo KK et al (2008) Significant association of ABCG8:D19H gene polymorphism with hypercholesterolemia and insulin resistance. J Hum Genet 53:757–763
pubmed: 18581044 doi: 10.1007/s10038-008-0310-2
Childs S, Yeh RL, Georges E et al (1995) Identification of a sister gene to P-glycoprotein. Cancer Res 55:2029–2034
pubmed: 7538046
Childs S, Yeh RL, Hui D et al (1998) Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein. Cancer Res 58:4160–4167
pubmed: 9751629
Cobb MM, Salen G, Tint GS (1997) Comparative effect of dietary sitosterol on plasma sterols and cholesterol and bile acid synthesis in a sitosterolemic homozygote and heterozygote subject. J Am Coll Nutr 16:605–613
pubmed: 9430090
Cole S, Bhardwaj G, Gerlach J et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654
pubmed: 1360704 doi: 10.1126/science.1360704
Crawford AR, Smith AJ, Hatch VC et al (1997) Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy. J Clin Investig 100:2562–2567
pubmed: 9366571 pmcid: 508457 doi: 10.1172/JCI119799
Cserepes J, Szentpetery Z, Seres L et al (2004) Functional expression and characterization of the human ABCG1 and ABCG4 proteins: indications for heterodimerization. Biochem Biophys Res Commun 320:860–867
pubmed: 15240127 doi: 10.1016/j.bbrc.2004.06.037
Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364
pubmed: 18535149 pmcid: 2415747 doi: 10.1128/MMBR.00031-07
Dean M, Allikmets R (1995) Evolution of ATP-binding cassette transporter genes. Curr Opin Genet Dev 5:779–785
pubmed: 8745077 doi: 10.1016/0959-437X(95)80011-S
Dean M, Annilo T (2005) Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genom Hum Genet 6:123–142
doi: 10.1146/annurev.genom.6.080604.162122
Dean M, Hamon Y, Chimini G (2001a) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42:1007–1017
pubmed: 11441126 doi: 10.1016/S0022-2275(20)31588-1
Dean M, Rzhetsky A, Allikmets R (2001b) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166
pubmed: 11435397 doi: 10.1101/gr.184901
Doyle LA, Yang W, Abruzzo LV et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95:15665–15670
pubmed: 9861027 pmcid: 28101 doi: 10.1073/pnas.95.26.15665
Farhat D, Rezaei F, Ristovski M et al (2022) Structural analysis of cholesterol binding and sterol selectivity by ABCG5/G8. J Mol Biolo 434:167795
doi: 10.1016/j.jmb.2022.167795
Ferreira MJ, de Sá-Nogueira I (2010) A multitask ATPase serving different ABC-type sugar importers in Bacillus subtilis. J Bacteriol 192:5312–5318
pubmed: 20693325 pmcid: 2950484 doi: 10.1128/JB.00832-10
Ford RC, Beis K (2019) Learning the ABCs one at a time: structure and mechanism of ABC transporters. Biochem Soc Trans 47:23–36
pubmed: 30626703 doi: 10.1042/BST20180147
Freeman LA, Kennedy A, Wu J et al (2004) The orphan nuclear receptor LRH-1 activates the ABCG5/ABCG8 intergenic promoter. J Lipid Res 45:1197–1206
pubmed: 15121760 doi: 10.1194/jlr.C400002-JLR200
Gisin J, Müller A, Pfänder Y et al (2010) A Rhodobacter capsulatus member of a universal permease family imports molybdate and other oxyanions. J Bacteriol 192:5943–5952
pubmed: 20851900 pmcid: 2976454 doi: 10.1128/JB.00742-10
Gottesman MM, Ambudkar SV (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr 33:453–458
pubmed: 11804186 doi: 10.1023/A:1012866803188
Graf GA, Li W-P, Gerard RD et al (2002) Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Investig 110:659–669
pubmed: 12208867 pmcid: 151110 doi: 10.1172/JCI0216000
Graf GA, Yu L, Li W et al (2003) ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 278:48275–48282
pubmed: 14504269 doi: 10.1074/jbc.M310223200
Graf GA, Cohen JC, Hobbs HH (2004) Missense mutations in ABCG5 and ABCG8 disrupt heterodimerization and trafficking. J Biol Chem 279:24881–24888
pubmed: 15054092 doi: 10.1074/jbc.M402634200
Grass DS, Saini U, Felkner RH et al (1995) Transgenic mice expressing both human apolipoprotein B and human CETP have a lipoprotein cholesterol distribution similar to that of normolipidemic humans. J Lipid Res 36:1082–1091
pubmed: 7658156 doi: 10.1016/S0022-2275(20)39866-7
Gregg RE, Connor WE, Lin DS et al (1986) Abnormal metabolism of shellfish sterols in a patient with sitosterolemia and xanthomatosis. J Clin Inves 77:1864–1872
doi: 10.1172/JCI112513
Hegyi Z, Homolya L (2016) Functional cooperativity between ABCG4 and ABCG1 isoforms. PLoS One 11:e0156516
pubmed: 27228027 pmcid: 4882005 doi: 10.1371/journal.pone.0156516
Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113
pubmed: 1282354 doi: 10.1146/annurev.cb.08.110192.000435
Hirata T, Okabe M, Kobayashi A et al (2009) Molecular mechanisms of subcellular localization of ABCG5 and ABCG8. Biosci Biotechnol Biochem 73:619–626
pubmed: 19270375 doi: 10.1271/bbb.80694
Huang J, Ecker GF (2023) A structure-based view on ABC-transporter linked to multidrug resistance. Molecules 28:495
pubmed: 36677553 pmcid: 9862083 doi: 10.3390/molecules28020495
Hubacek JA, Berge KE, Cohen JC et al (2001) Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum Mutat 18:359–360
pubmed: 11668628 doi: 10.1002/humu.1206
Hwang JU, Song WY, Hong D et al (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355
pubmed: 26902186 doi: 10.1016/j.molp.2016.02.003
Jiang ZY, Cai Q, Chen EZ (2014) Association of three common single nucleotide polymorphisms of ATP binding cassette G8 gene with gallstone disease: a meta-analysis. PLoS One 9:e87200
pubmed: 24498041 pmcid: 3907501 doi: 10.1371/journal.pone.0087200
Johnson BJ, Lee JY, Pickert A et al (2010) Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8. Biochemistry 49:3403–3411
pubmed: 20210363 doi: 10.1021/bi902064g
Juliano R, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta Biomembr 455:152–162
doi: 10.1016/0005-2736(76)90160-7
Kajinami K, Brousseau ME, Ordovas JM et al (2004) Interactions between common genetic polymorphisms in ABCG5/G8 and CYP7A1 on LDL cholesterol-lowering response to atorvastatin. Atherosclerosis 175:287–293
pubmed: 15262185 doi: 10.1016/j.atherosclerosis.2004.03.015
Kamisako T, Ogawa H, Yamamoto K (2007) Effect of cholesterol, cholic acid and cholestyramine administration on the intestinal mRNA expressions related to cholesterol and bile acid metabolism in the rat. J Gastroenterol Hepatol 22:1832–1837
pubmed: 17498222 doi: 10.1111/j.1440-1746.2007.04910.x
Katsika D, Magnusson P, Krawczyk M et al (2010) Gallstone disease in Swedish twins: risk is associated with ABCG8 D19H genotype. J Intern Med 268:279–285
pubmed: 20497293 doi: 10.1111/j.1365-2796.2010.02249.x
Klett EL, Lu K, Kosters A et al (2004) A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol. BMC Med 2:5
pubmed: 15040800 pmcid: 394351 doi: 10.1186/1741-7015-2-5
Kosters A, Kunne C, Looije N et al (2006) The mechanism of ABCG5/ABCG8 in biliary cholesterol secretion in mice. J Lipid Res 47:1959–1956
pubmed: 16741293 doi: 10.1194/jlr.M500511-JLR200
Kuo K-K, Shin S-J, Chen Z-C (2008) Significant association of ABCG5 604Q and ABCG8 D19H polymorphisms with gallstone disease. Br J Surg 95:1005–1011
pubmed: 18457353 doi: 10.1002/bjs.6178
Kwiterovich PO, Bachorik PS, Smith HH et al (1981) Hyperapobetalipoproteinaemia in two families with xanthomas and phytosterolaemia. Lancet 1:466–469
pubmed: 6110091 doi: 10.1016/S0140-6736(81)91850-X
Lee M-H, Lu K, Hazard S et al (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 27:79–83
pubmed: 11138003 pmcid: 1350991 doi: 10.1038/83799
Lee J-Y, Kinch LN, Borek DM et al (2016) Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533:561–564
pubmed: 27144356 pmcid: 4964963 doi: 10.1038/nature17666
Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8:411–424
pubmed: 14530494 doi: 10.1634/theoncologist.8-5-411
Lin HJ, Wang C, Salen G et al (1983) Sitosterol and cholesterol metabolism in a patient with coexisting phytosterolemia and cholestanolemia. Metab Clin Exp 32:126–133
pubmed: 6827984 doi: 10.1016/0026-0495(83)90216-0
Linton KJ, Higgins CF (1998) The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 28:5–13
pubmed: 9593292 doi: 10.1046/j.1365-2958.1998.00764.x
Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23:487–493
pubmed: 27273632 doi: 10.1038/nsmb.3216
López-Marqués RL, Poulsen LR, Bailly A et al (2015) Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta 1850:461–475
pubmed: 24746984 doi: 10.1016/j.bbagen.2014.04.008
Lu K, Lee MH, Hazard S et al (2001) Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 69:278–290
pubmed: 11452359 pmcid: 1201544 doi: 10.1086/321294
Maguire A, Hellier K, Hammans S et al (2001) X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L. Br J Haematol 115:910–917
pubmed: 11843825 doi: 10.1046/j.1365-2141.2001.03015.x
Matsumura Y, Sakai H, Sasaki M et al (2007) ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells. FEBS Lett 581:3139–3144
pubmed: 17574245 doi: 10.1016/j.febslet.2007.05.078
McDaniel AL, Alger HM, Sawyer JK et al (2013) Phytosterol feeding causes toxicity in ABCG5/G8 knockout mice. Am J Pathol 182:1131–1138
pubmed: 23380580 pmcid: 3620394 doi: 10.1016/j.ajpath.2012.12.014
Michaki V, Guix FX, Vennekens K et al (2012) Down-regulation of the ATPbinding cassette transporter 2 (Abca2) reduces amyloid-beta production by altering Nicastrin maturation and intracellular localization. J Biol Chem 287:1100–1111
pubmed: 22086926 doi: 10.1074/jbc.M111.288258
Miettinen TA (1980) Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. Eur J Clin Investig 10:27–35
doi: 10.1111/j.1365-2362.1980.tb00006.x
Morita M, Imanaka T (2012) Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta 1822:1387–1396
pubmed: 22366764 doi: 10.1016/j.bbadis.2012.02.009
Morita SY, Kobayashi A, Takanezawa Y et al (2007) Bile salt–dependent efflux of cellular phospholipids mediated by ATP binding cassette protein B4. Hepatology 46:188–199
pubmed: 17523162 doi: 10.1002/hep.21591
Mushtaq T, Wales JK, Wright NP (2007) Adrenal insufficiency in phytosterolaemia. Eur J Endocrinol 157(Suppl 1):S61–S65
pubmed: 17785700 doi: 10.1530/EJE-07-0222
Nguyen LB, Salen G, Shefer S et al (1990) Decreased cholesterol biosynthesis in sitosterolemia with xanthomatosis: diminished mononuclear leukocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and enzyme protein associated with increased low-density lipoprotein receptor function. Metab Clin Exp 39:436–443
pubmed: 2325562 doi: 10.1016/0026-0495(90)90260-J
Nguyen LB, Cobb M, Shefer S et al (1991) Regulation of cholesterol biosynthesis in sitosterolemia: effects of lovastatin, cholestyramine, and dietary sterol restriction. J Lipid Res 32:1941–1948
pubmed: 1816322 doi: 10.1016/S0022-2275(20)41897-8
Ouimet M, Barrett TJ, Fisher EA (2019) HDL and reverse cholesterol transport: basic mechanisms and their roles in vascular health and disease. Circ Res 124:1505–1518
pubmed: 31071007 pmcid: 6813799 doi: 10.1161/CIRCRESAHA.119.312617
Pandzic E, Gelissen IC, Whan R et al (2017) The ATP binding cassette transporter, ABCG1, localizes to cortical actin filaments. Sci Rep 7:42025
pubmed: 28165022 pmcid: 5292732 doi: 10.1038/srep42025
Patel SB, Salen G (2010) Sitosterolemia: xenophobia for the body. In: Vissers MN, Kastelein JJP, Stroes ES (eds) Evidence-based management of lipid disorders. TFM Publishing Ltd., Shrewsbury, pp 217–230
Patel SB, Honda A, Salen G (1998) Sitosterolemia: exclusion of genes involved in reduced cholesterol biosynthesis. J Lipid Res 39:1055–1061
pubmed: 9610773 doi: 10.1016/S0022-2275(20)33874-8
Patel SB, Graf GA, Temel RE (2018) ABCG5 and ABCG8: more than a defense against xenosterols. J Lipid Res 59:1103–1113
pubmed: 29728459 pmcid: 6027916 doi: 10.1194/jlr.R084244
Plummer AM, Alan T, Lial M (2021) The ABCs of sterol transport. Annu Rev Physiol 83:153–181
pubmed: 33141631 doi: 10.1146/annurev-physiol-031620-094944
Rees DC, Iolascon A, Carella M et al (2005) Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. Br J Haematol 130:297–309
pubmed: 16029460 doi: 10.1111/j.1365-2141.2005.05599.x
Renner O, Lutjohann D, Richter D et al (2013) Role of the ABCG8 19H risk allele in cholesterol absorption and gallstone disease. BMC Gastroenterol 13:30
pubmed: 23406058 pmcid: 3598676 doi: 10.1186/1471-230X-13-30
Repa JJ, Berge KE, Pomajzl C et al (2002) Regulation of ATPbinding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J Biol Chem 277:18793–18800
pubmed: 11901146 doi: 10.1074/jbc.M109927200
Rezaei F, Farhat D, Gursu G et al (2023) Snapshots of ABCG1 and ABCG5/G8: a Sterol’s journey to cross the cellular membranes. Int J Mol Sci 24:484
doi: 10.3390/ijms24010484
Salen G, Ahrens EH Jr, Grundy SM (1970) Metabolism of beta sitosterol in man. J Clin Invest 49:952–967
pubmed: 5441548 pmcid: 535768 doi: 10.1172/JCI106315
Salen G, Horak I, Rothkopf M et al (1985) Lethal atherosclerosis associated with abnormal plasma and tissue sterol composition in sitosterolemia with xanthomatosis. J Lipid Res 26:1126–1133
pubmed: 4067433 doi: 10.1016/S0022-2275(20)34286-3
Salen G, Shore V, Tint GS et al (1989) Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis. J Lipid Res 30:1319–1330
pubmed: 2600539 doi: 10.1016/S0022-2275(20)38259-6
Sano O, Ito S, Kato R et al (2014) ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane. PLoS One 9:e109886
pubmed: 25302608 pmcid: 4193829 doi: 10.1371/journal.pone.0109886
Schumacher T, Benndorf RA (2017) ABC transport proteins in cardiovascular disease—a brief summary. Molecules 22:589
pubmed: 28383515 pmcid: 6154303 doi: 10.3390/molecules22040589
Seelig A, Li-Blatter X (2023) P-glycoprotein (ABCB1)—weak dipolar interactions provide the key to understanding allocrite recognition, binding, and transport. Cancer Drug Resist 6:1–29
pubmed: 37070101 pmcid: 10105259 doi: 10.20517/cdr.2022.59
Sharom FJ (2011) Flipping and flopping–lipids on the move. IUBMB Life 63:736–746
pubmed: 21793163
Shulman RS, Bhattacharyya AK, Connor WE et al (1976) Beta-sitosterolemia and xanthomatosis. N Engl J Med 294:482–483
pubmed: 1246333 doi: 10.1056/NEJM197602262940907
Small DM (2003) Role of ABC transporters in secretion of cholesterol from liver into bile. PNAS 100:4–6
pubmed: 12509503 doi: 10.1073/pnas.0237205100
Solca C, Tint GS, Patel SB (2013) Dietary xenosterols lead to infertility and loss of abdominal adipose tissue in sterolindeficient mice. J Lipid Res 54:397–409
pubmed: 23180829 pmcid: 3588869 doi: 10.1194/jlr.M031476
Srivastava A, Srivastava A, Srivastava K et al (2010) Role of ABCG8 D19H (rs11887534) variant in gallstone susceptibility in northern India. J Gastroenterol Hepatol 25:1758–1762
pubmed: 21039838 doi: 10.1111/j.1440-1746.2010.06349.x
Steck TL, Lange Y (2018) Transverse distribution of plasma membrane bilayer cholesterol: picking sides. Traffic 19:750–760
pubmed: 29896788 doi: 10.1111/tra.12586
Sumi K, Tanaka T, Uchida A et al (2007) Cooperative interaction between hepatocyte nuclear factor 4α and GATA transcription factors regulates ATP-binding cassette sterol transporters ABCG5 and ABCG8. Mol Cell Biol 27:4248–4260
pubmed: 17403900 pmcid: 1900057 doi: 10.1128/MCB.01894-06
Theodoulou FL (2000) Plant ABC transporters. Biochim Biophys Acta Biomembr 1465:79–103
doi: 10.1016/S0005-2736(00)00132-2
Von Kampen O, Buch S, Nothnagel M et al (2013) Genetic and functional identification of the likely causative variant for cholesterol gallstone disease at the ABCG5/8 lithogenic locus. Hepatology 57:2407–2417
doi: 10.1002/hep.26009
Vrins C, Vink E, Vandenberghe KE et al (2007) The sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to mediate cholesterol efflux. FEBS Lett 581:4616–4620
pubmed: 17825296 doi: 10.1016/j.febslet.2007.08.052
Vrins CL, Ottenhoff R, van den Oever K et al (2012) Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein. J Lipid Res 53:2017–2023
pubmed: 22802462 pmcid: 3435535 doi: 10.1194/jlr.M022194
Wang Z, Stalcup LD, Harvey BJ et al (2006) Purification and ATP hydrolysis of the putative cholesterol transporters ABCG5 and ABCG8. Biochemistry 45:9929–9939
pubmed: 16893193 doi: 10.1021/bi0608055
Wang Y, Jiang ZY, Fei J et al (2007) ATP binding cassette G8 T400K polymorphism may affect the risk of gallstone disease among Chinese males. Clin Chim Acta 384:80–85
pubmed: 17612515 doi: 10.1016/j.cca.2007.06.004
Wang Z, Cao L, Su Y et al (2014) Specific macrothrombocytopenia/hemolytic anemia associated with sitosterolemia. Am J Hematol 89:320–324
pubmed: 24166850 doi: 10.1002/ajh.23619
Wang J, Mitsche MA, Lutjohann D et al (2015) Relative roles of ABCG5/ABCG8 in liver and intestine. J Lipid Res 56:319–330
pubmed: 25378657 pmcid: 4306686 doi: 10.1194/jlr.M054544
Williams K, Segard A, Graf GA (2021) Sitosterolemia: twenty years of discovery of the function of ABCG5 ABCG8. Int J Mol Sci 22:2641
pubmed: 33807969 pmcid: 7961684 doi: 10.3390/ijms22052641
Wilson DW, Oslund KL, Lyons B et al (2013) Inflammatory dilated cardiomyopathy in Abcg5-deficient mice. Toxicol Pathol 41:880–892
pubmed: 23129576 doi: 10.1177/0192623312466191
Xavier BM, Jennings WJ, Zein AA et al (2019) Structural snapshot of the cholesterol-transport ATP-binding cassette proteins. Biochem Cell Biol 97:224–233
pubmed: 30058354 doi: 10.1139/bcb-2018-0151
Xavier BM, Zein AA, Venes A et al (2020) Transmembrane polar relay drives the allosteric regulation for ABCG5/G8 sterol transporter. Int J Mol Sci 21:8747
pubmed: 33228147 pmcid: 7699580 doi: 10.3390/ijms21228747
Yang C, Yu L, Li W et al (2004) Disruption of cholesterol homeostasis by plant sterols. J Clin Invest 114:813–822
pubmed: 15372105 pmcid: 516266 doi: 10.1172/JCI22186
Yu L, Hammer RE, Li-Hawkins J (2002a) Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A 99:16237–16242
pubmed: 12444248 pmcid: 138595 doi: 10.1073/pnas.252582399
Yu L, Li-Hawkins J, Hammer RE et al (2002b) Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Investig 110:671–680
pubmed: 12208868 pmcid: 151111 doi: 10.1172/JCI0216001
Yu L, von Bergmann K, Lutjohann D et al (2004) Selective sterol accumulation in ABCG5/ABCG8-deficient mice. J Lipid Res 45:301–307
pubmed: 14657202 doi: 10.1194/jlr.M300377-JLR200
Yu L, Gupta S, Xu F et al (2005) Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem 280:8742–8747
pubmed: 15611112 doi: 10.1074/jbc.M411080200
Zein AA, Kaur R, Hussein TOK et al (2019) ABCG5/G8: a structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochem Soc Trans 47:1259–1268
pubmed: 31654053 pmcid: 6824678 doi: 10.1042/BST20190130
Zhang DW, Graf GA, Gerard RD et al (2006) Functional asymmetry of nucleotidebinding domains in ABCG5 and ABCG8. J Biol Chem 281:4507–4516
pubmed: 16352607 doi: 10.1074/jbc.M512277200
Zhang Y-K, Wang Y-J, Gupta P et al (2015) Multidrug resistance proteins (MRPs) and cancer therapy. AAPS J 17:802–812
pubmed: 25840885 pmcid: 4476997 doi: 10.1208/s12248-015-9757-1

Auteurs

Sergio Paulo Bydlowski (SP)

Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil. sergio.b@fm.usp.br.
National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera) CNPq, Rio de Janeiro, Brazil. sergio.b@fm.usp.br.

Debora Levy (D)

Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Humans Shock, Septic Male Female Lipoproteins
Humans Respiratory Distress Syndrome, Newborn Infant, Newborn ATP-Binding Cassette Transporters Mutation, Missense

Elucidating ATP's role as solubilizer of biomolecular aggregate.

Susmita Sarkar, Saurabh Gupta, Chiranjit Mahato et al.
1.00
Adenosine Triphosphate Protein Aggregates Solubility Humans Protein Conformation

Classifications MeSH