Non-contrast-enhanced magnetic resonance urography for measuring split kidney function in pediatric patients with hydronephrosis: comparison with renal scintigraphy.
Hydronephrosis
MR urography
Pediatrics
Split kidney function
Journal
Pediatric nephrology (Berlin, Germany)
ISSN: 1432-198X
Titre abrégé: Pediatr Nephrol
Pays: Germany
ID NLM: 8708728
Informations de publication
Date de publication:
May 2024
May 2024
Historique:
received:
19
06
2023
accepted:
02
11
2023
revised:
01
11
2023
medline:
18
3
2024
pubmed:
2
12
2023
entrez:
2
12
2023
Statut:
ppublish
Résumé
Split kidney function (SKF) is critical for treatment decision in pediatric patients with hydronephrosis and is commonly measured using renal scintigraphy (RS). Non-contrast-enhanced magnetic resonance urography (NCE-MRU) is increasingly used in clinical practice. This study aimed to investigate the feasibility of using NCE-MRU as an alternative to estimate SKF in pediatric patients with hydronephrosis, compared to RS. Seventy-five pediatric patients with hydronephrosis were included in this retrospective study. All patients underwent NCE-MRU and RS within 2 weeks. Kidney parenchyma volume (KPV) and texture analysis parameters were obtained from T2-weighted (T2WI) in NCE-MRU. The calculated split KPV (SKPV) percent and texture analysis parameters percent of left kidney were compared with the RS-determined SKF. SKPV showed a significant positive correlation with SKF (r = 0.88, p < 0.001), while inhomogeneity was negatively correlated with SKF (r = - 0.68, p < 0.001). The uncorrected and corrected prediction models of SKF were established using simple and multiple linear regression. Bland-Altman plots demonstrated good agreement of both predictive models. The residual sum of squares of the corrected prediction model was lower than that of the uncorrected model (0.283 vs. 0.314) but not statistically significant (p = 0.662). Subgroup analysis based on different MR machines showed correlation coefficients of 0.85, 0.95, and 0.94 between SKF and SKPV for three different scanners, respectively (p < 0.05 for all). NCE-MRU can be used as an alternative method for estimating SKF in pediatric patients with hydronephrosis when comparing with RS. Specifically, SKPV proves to be a simple and universally applicable indicator for predicting SKF.
Sections du résumé
BACKGROUND
BACKGROUND
Split kidney function (SKF) is critical for treatment decision in pediatric patients with hydronephrosis and is commonly measured using renal scintigraphy (RS). Non-contrast-enhanced magnetic resonance urography (NCE-MRU) is increasingly used in clinical practice. This study aimed to investigate the feasibility of using NCE-MRU as an alternative to estimate SKF in pediatric patients with hydronephrosis, compared to RS.
METHODS
METHODS
Seventy-five pediatric patients with hydronephrosis were included in this retrospective study. All patients underwent NCE-MRU and RS within 2 weeks. Kidney parenchyma volume (KPV) and texture analysis parameters were obtained from T2-weighted (T2WI) in NCE-MRU. The calculated split KPV (SKPV) percent and texture analysis parameters percent of left kidney were compared with the RS-determined SKF.
RESULTS
RESULTS
SKPV showed a significant positive correlation with SKF (r = 0.88, p < 0.001), while inhomogeneity was negatively correlated with SKF (r = - 0.68, p < 0.001). The uncorrected and corrected prediction models of SKF were established using simple and multiple linear regression. Bland-Altman plots demonstrated good agreement of both predictive models. The residual sum of squares of the corrected prediction model was lower than that of the uncorrected model (0.283 vs. 0.314) but not statistically significant (p = 0.662). Subgroup analysis based on different MR machines showed correlation coefficients of 0.85, 0.95, and 0.94 between SKF and SKPV for three different scanners, respectively (p < 0.05 for all).
CONCLUSIONS
CONCLUSIONS
NCE-MRU can be used as an alternative method for estimating SKF in pediatric patients with hydronephrosis when comparing with RS. Specifically, SKPV proves to be a simple and universally applicable indicator for predicting SKF.
Identifiants
pubmed: 38041747
doi: 10.1007/s00467-023-06224-1
pii: 10.1007/s00467-023-06224-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1447-1457Subventions
Organisme : National Natural Science Foundation of China
ID : 82071889
Informations de copyright
© 2023. The Author(s), under exclusive licence to International Pediatric Nephrology Association.
Références
Majd M, Bar-Sever Z, Santos AI, De Palma D (2018) The SNMMI and EANM procedural guidelines for diuresis renography in infants and children. J Nucl Med 59:1636–1640. https://doi.org/10.2967/jnumed.118.215921
doi: 10.2967/jnumed.118.215921
pubmed: 30275286
pmcid: 6167528
Arora S, Yadav P, Kumar M, Singh SK, Sureka SK, Mittal V, Ansari MS (2015) Predictors for the need of surgery in antenatally detected hydronephrosis due to UPJ obstruction–a prospective multivariate analysis. J Pediatr Urol 11:241–248. https://doi.org/10.1016/j.jpurol.2015.02.008
doi: 10.1016/j.jpurol.2015.02.008
Radmayr C, Bogaert G, Burgu B, Castagnetti MS, Dogan HS, Kelly FO, Quaedackers J, Rawashdeh YFH, Silay MS, T Hoen LA, Kennedy UK, Gnech M, Skott M, van Uitert A, Zachou A, Darraugh JA, Radmayr C, Bogaert G, Burgu B, Castagnetti MS, Dogan HS, Kelly FO, Quaedackers J, Rawashdeh YFH, Silay MS, T Hoen LA, Kennedy UK, Gnech M, Skott M, van Uitert A, Zachou A, Darraugh JA (2023) EAU Guidelines on paediatric urology. ISBN 978–94–92671–19–6
McDaniel BB, Jones RA, Scherz H, Kirsch AJ, Little SB, Grattan-Smith JD (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 2, anatomic and functional assessment of ureteropelvic junction obstruction [corrected]. AJR Am J Roentgenol 185:1608–1614. https://doi.org/10.2214/AJR.04.1574
doi: 10.2214/AJR.04.1574
pubmed: 16304022
Bar-Sever Z, Shammas A, Gheisari F, Vali R (2022) Pediatric nephro-urology: overview and updates in diuretic renal scans and renal cortical scintigraphy. Semin Nucl Med 52:419–431. https://doi.org/10.1053/j.semnuclmed.2021.12.002
doi: 10.1053/j.semnuclmed.2021.12.002
pubmed: 35031115
Taylor AT (2014) Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices. J Nucl Med 55:608–615. https://doi.org/10.2967/jnumed.113.133447
doi: 10.2967/jnumed.113.133447
pubmed: 24549283
Liu W, Zhu Y, Zhu X, Yang G, Xu Y, Tang L (2015) CT-based renal volume measurements: correlation with renal function in patients with renal tumours. Clin Radiol 70:1445–1450. https://doi.org/10.1016/j.crad.2015.09.005
doi: 10.1016/j.crad.2015.09.005
pubmed: 26454346
Li J, Xun Y, Li C, Han Y, Shen Y, Hu X, Hu D, Liu Z, Wang S, Li Z (2020) Estimation of renal function using unenhanced computed tomography in upper urinary tract stones patients. Front Med (Lausanne) 7:309. https://doi.org/10.3389/fmed.2020.00309
doi: 10.3389/fmed.2020.00309
pubmed: 32719802
Halleck F, Diederichs G, Koehlitz T, Slowinski T, Engelken F, Liefeldt L, Friedersdorff F, Fuller TF, Magheli A, Neumayer HH, Budde K, Waiser J (2013) Volume matters: CT-based renal cortex volume measurement in the evaluation of living kidney donors. Transpl Int 26:1208–1216. https://doi.org/10.1111/tri.12195
doi: 10.1111/tri.12195
pubmed: 24118327
Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21:898–910. https://doi.org/10.1681/ASN.2009121248
doi: 10.1681/ASN.2009121248
pubmed: 20150537
Chung AD, Schieda N, Shanbhogue AK, Dilauro M, Rosenkrantz AB, Siegelman ES (2016) MRI evaluation of the urothelial tract: pitfalls and solutions. AJR Am J Roentgenol 207:W108–W116. https://doi.org/10.2214/AJR.16.16348
doi: 10.2214/AJR.16.16348
pubmed: 27611739
Dickerson EC, Dillman JR, Smith EA, DiPietro MA, Lebowitz RL, Darge K (2015) Pediatric MR urography: indications, techniques, and approach to review. Radiographics 35:1208–1230. https://doi.org/10.1148/rg.2015140223
doi: 10.1148/rg.2015140223
pubmed: 26172361
Gallo-Bernal S, Patino-Jaramillo N, Calixto CA, Higuera SA, Forero JF, Lara FJ, Góngora C, Gee MS, Ghoshhajra B, Medina HM (2022) Nephrogenic systemic fibrosis in patients with chronic kidney disease after the use of gadolinium-based contrast agents: a review for the cardiovascular imager. Diagnostics (Basel) 12:1816. https://doi.org/10.3390/diagnostics12081816
doi: 10.3390/diagnostics12081816
pubmed: 36010167
Khrichenko D, Darge K (2010) Functional analysis in MR urography - made simple. Pediatr Radiol 40:182–199. https://doi.org/10.1007/s00247-009-1458-4
doi: 10.1007/s00247-009-1458-4
pubmed: 20012602
Giganti F, Antunes S, Salerno A, Ambrosi A, Marra P, Nicoletti R, Orsenigo E, Chiari D, Albarello L, Staudacher C, Esposito A, Del MA, De Cobelli F (2017) Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker. Eur Radiol 27:1831–1839. https://doi.org/10.1007/s00330-016-4540-y
doi: 10.1007/s00330-016-4540-y
pubmed: 27553932
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169
doi: 10.1148/radiol.2015151169
pubmed: 26579733
Lu J, Hu D, Tang H, Hu X, Shen Y, Li Z, Peng Y, Kamel I (2019) Assessment of tumor heterogeneity: differentiation of periampullary neoplasms based on CT whole-lesion histogram analysis. Eur J Radiol 115:1–9. https://doi.org/10.1016/j.ejrad.2019.03.021
doi: 10.1016/j.ejrad.2019.03.021
pubmed: 31084752
Park H, Kim KA, Jung JH, Rhie J, Choi SY (2020) MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer. Eur Radiol 30:4201–4211. https://doi.org/10.1007/s00330-020-06835-4
doi: 10.1007/s00330-020-06835-4
pubmed: 32270317
Kline TL, Korfiatis P, Edwards ME, Bae KT, Yu A, Chapman AB, Mrug M, Grantham JJ, Landsittel D, Bennett WM, King BF, Harris PC, Torres VE, Erickson BJ (2017) Image texture features predict renal function decline in patients with autosomal dominant polycystic kidney disease. Kidney Int 92:1206–1216. https://doi.org/10.1016/j.kint.2017.03.026
doi: 10.1016/j.kint.2017.03.026
pubmed: 28532709
pmcid: 5651185
Yu B, Huang C, Fan X, Li F, Zhang J, Song Z, Zhi N, Ding J (2022) Application of MR imaging features in differentiation of renal changes in patients with stage III type 2 diabetic nephropathy and normal subjects. Front Endocrinol (Lausanne) 13:846407. https://doi.org/10.3389/fendo.2022.846407
doi: 10.3389/fendo.2022.846407
pubmed: 35600605
Grzywińska M, Jankowska M, Banach-Ambroziak E, Szurowska E, Dębska-Ślizień A (2020) Computation of the texture features on T2-weighted images as a novel method to assess the function of the transplanted kidney: primary research. Transplant Proc 52:2062–2066. https://doi.org/10.1016/j.transproceed.2020.02.084
doi: 10.1016/j.transproceed.2020.02.084
pubmed: 32253002
Gates GF (1983) Split renal function testing using Tc-99m DTPA. A rapid technique for determining differential glomerular filtration. Clin Nucl Med 8:400–407. https://doi.org/10.1097/00003072-198309000-00003
doi: 10.1097/00003072-198309000-00003
pubmed: 6357589
Warady BA, Chadha V (2007) Chronic kidney disease in children: the global perspective. Pediatr Nephrol 22:1999–2009. https://doi.org/10.1007/s00467-006-0410-1
doi: 10.1007/s00467-006-0410-1
pubmed: 17310363
pmcid: 2064944
Tang Y, Yamashita Y, Namimoto T, Abe Y, Nishiharu T, Sumi S, Takahashi M (1996) The value of MR urography that uses HASTE sequences to reveal urinary tract disorders. AJR Am J Roentgenol 167:1497–1502. https://doi.org/10.2214/ajr.167.6.8956584
doi: 10.2214/ajr.167.6.8956584
pubmed: 8956584
Lange D, Helck A, Rominger A, Crispin A, Meiser B, Werner J, Fischereder M, Stangl M, Habicht A (2018) Renal volume assessed by magnetic resonance imaging volumetry correlates with renal function in living kidney donors pre- and postdonation: a retrospective cohort study. Transpl Int 31:773–780. https://doi.org/10.1111/tri.13150
doi: 10.1111/tri.13150
pubmed: 29575113
Shi W, Liang X, Wu N, Zhang H, Yuan X, Tan Y (2020) Assessment of split renal function using a combination of contrast-enhanced CT and serum creatinine values for glomerular filtration rate estimation. AJR Am J Roentgenol 215:142–147. https://doi.org/10.2214/AJR.19.22125
doi: 10.2214/AJR.19.22125
pubmed: 32255686
Lal H, Singh P, Yadav P, Singh A, Singh UP, Sureka SK, Kapoor R (2020) Role of preoperative MR volumetry in patients with renal cell carcinoma for prediction of postoperative renal function after radical nephrectomy and nephron sparing surgery. Int Braz J Urol 46:234–241. https://doi.org/10.1590/S1677-5538.IBJU.2019.0217
doi: 10.1590/S1677-5538.IBJU.2019.0217
pubmed: 32022512
pmcid: 7025851
Siedek F, Haneder S, Dörner J, Morelli JN, Chon SH, Maintz D, Houbois C (2019) Estimation of split renal function using different volumetric methods: inter- and intraindividual comparison between MRI and CT. Abdom Radiol (NY) 44:1481–1492. https://doi.org/10.1007/s00261-018-1857-9
doi: 10.1007/s00261-018-1857-9
pubmed: 30506477
Liang P, Xu C, Tripathi P, Li J, Li A, Hu D, Kamel I, Li Z (2021) One-stop assessment of renal function and renal artery in hypertensive patients with suspected renal dysfunction: non-enhanced MRI using spatial labeling with multiple inversion pulses. Eur Radiol 31:94–103. https://doi.org/10.1007/s00330-020-07088-x
doi: 10.1007/s00330-020-07088-x
pubmed: 32749582
Li Q, Wang D, Zhu X, Shen K, Xu F, Chen Y (2018) Combination of renal apparent diffusion coefficient and renal parenchymal volume for better assessment of split renal function in chronic kidney disease. Eur J Radiol 108:194–200. https://doi.org/10.1016/j.ejrad.2018.10.002
doi: 10.1016/j.ejrad.2018.10.002
pubmed: 30396655
Liang P, Li S, Xu C, Li J, Tan F, Hu D, Kamel I, Li Z (2021) Assessment of renal function using magnetic resonance quantitative histogram analysis based on spatial labeling with multiple inversion pulses. Ann Transl Med 9:1614. https://doi.org/10.21037/atm-21-2299
doi: 10.21037/atm-21-2299
pubmed: 34926658
pmcid: 8640904
Zhang YD, Wu CJ, Wang Q, Zhang J, Wang XN, Liu XS, Shi HB (2015) Comparison of utility of histogram apparent diffusion coefficient and R2* for differentiation of low-grade from high-grade clear cell renal cell carcinoma. AJR Am J Roentgenol 205:W193–W201. https://doi.org/10.2214/AJR.14.13802
doi: 10.2214/AJR.14.13802
pubmed: 26204307
Liu HF, Wang Q, Du YN, Ding JL, Zhang JG, Xing W (2021) Whole-liver histogram analysis of blood oxygen level-dependent functional magnetic resonance imaging in evaluating hepatic fibrosis. Ann Palliat Med 10:2567–2576. https://doi.org/10.21037/apm-20-1753
doi: 10.21037/apm-20-1753
pubmed: 33440975
Wang S, Meng M, Zhang X, Wu C, Wang R, Wu J, Sami MU, Xu K (2018) Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest. Oncol Lett 15:7297–7304. https://doi.org/10.3892/ol.2018.8232
doi: 10.3892/ol.2018.8232
pubmed: 29731887
pmcid: 5921227
Mo X, Chen W, Chen S, Chen Z, Guo Y, Chen Y, Wu X, Zhang L, Chen Q, Jin Z, Li M, Chen L, You J, Xiong Z, Zhang B, Zhang S (2023) MRI texture-based machine learning models for the evaluation of renal function on different segmentations: a proof-of-concept study. Insights Imaging 14:28. https://doi.org/10.1186/s13244-023-01370-4
doi: 10.1186/s13244-023-01370-4
pubmed: 36746892
pmcid: 9902579
Jiang Z, Wang Y, Ding J, Yu S, Zhang J, Zhou H, Di J, Xing W (2020) Susceptibility weighted imaging (SWI) for evaluating renal dysfunction in type 2 diabetes mellitus: a preliminary study using SWI parameters and SWI-based texture features. Ann Transl Med 8:1673. https://doi.org/10.21037/atm-20-7121
doi: 10.21037/atm-20-7121
pubmed: 33490185
pmcid: 7812222
Chandarana H, Rosenkrantz AB, Mussi TC, Kim S, Ahmad AA, Raj SD, McMenamy J, Melamed J, Babb JS, Kiefer B, Kiraly AP (2012) Histogram analysis of whole-lesion enhancement in differentiating clear cell from papillary subtype of renal cell cancer. Radiology 265:790–798. https://doi.org/10.1148/radiol.12111281
doi: 10.1148/radiol.12111281
pubmed: 23175544
Breysem L, De Rechter S, De Keyzer F, Smet MH, Bammens B, Van Dyck M, Hofmans M, Oyen R, Levtchenko E, Mekahli D (2018) 3DUS as an alternative to MRI for measuring renal volume in children with autosomal dominant polycystic kidney disease. Pediatr Nephrol 33:827–835. https://doi.org/10.1007/s00467-017-3862-6
doi: 10.1007/s00467-017-3862-6
pubmed: 29306987
Damasio MB, Bodria M, Dolores M, Durand E, Sertorio F, Wong M, Dacher JN, Hassani A, Pistorio A, Mattioli G, Magnano G, Vivier PH (2019) Comparative study between functional MR urography and renal scintigraphy to evaluate drainage curves and split renal function in children with congenital anomalies of kidney and urinary tract (CAKUT). Front Pediatr 7:527. https://doi.org/10.3389/fped.2019.00527
doi: 10.3389/fped.2019.00527
pubmed: 32047727
Brown BP, Simoneaux SF, Dillman JR, Rigsby CK, Iyer RS, Alazraki AL, Bardo D, Chan SS, Chandra T, Dorfman SR, Garber MD, Moore MM, Nguyen JC, Peters CA, Shet NS, Siegel A, Waseem M, Karmazyn B (2020) ACR Appropriateness Criteria® Antenatal Hydronephrosis-Infant. J Am Coll Radiol 17:S367–S379. https://doi.org/10.1016/j.jacr.2020.09.017
doi: 10.1016/j.jacr.2020.09.017
pubmed: 33153550
Rodigas J, Kirsch H, John U, Seifert P, Winkens T, Stenzel M, Mentzel HJ (2018) Static and functional MR urography to assess congenital anomalies of the kidney and urinary tract in infants and children: comparison with MAG3 renal scintigraphy and sonography. AJR Am J Roentgenol 211:193–203. https://doi.org/10.2214/AJR.17.17891
doi: 10.2214/AJR.17.17891
pubmed: 29702016
Houat AP, Guimarães C, Takahashi MS, Rodi GP, Gasparetto T, Blasbalg R, Velloni FG (2021) Congenital anomalies of the upper urinary tract: a comprehensive review. Radiographics 41:462–486. https://doi.org/10.1148/rg.2021200078
doi: 10.1148/rg.2021200078
pubmed: 33513074
Mahmoud H, Buchanan C, Francis ST, Selby NM (2016) Imaging the kidney using magnetic resonance techniques: structure to function. Curr Opin Nephrol Hypertens 25:487–493. https://doi.org/10.1097/MNH.0000000000000266
doi: 10.1097/MNH.0000000000000266
pubmed: 27636770
Peperhove M, Vo CV, Jang MS, Gutberlet M, Hartung D, Tewes S, Warnecke G, Fegbeutel C, Haverich A, Gwinner W, Lehner F, Bräsen JH, Haller H, Wacker F, Gueler F, Hueper K (2018) Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation. Eur Radiol 28:44–50. https://doi.org/10.1007/s00330-017-4943-4
doi: 10.1007/s00330-017-4943-4
pubmed: 28710580
Serai SD, Hu HH, Ahmad R, White S, Pednekar A, Anupindi SA, Lee EY (2020) Newly developed methods for reducing motion artifacts in pediatric abdominal MRI: tips and pearls. AJR Am J Roentgenol 214:1042–1053. https://doi.org/10.2214/AJR.19.21987
doi: 10.2214/AJR.19.21987
pubmed: 32023117
Brink A (2022) Pitfalls of radionuclide renal imaging in pediatrics. Semin Nucl Med 52:432–444. https://doi.org/10.1053/j.semnuclmed.2021.12.001
doi: 10.1053/j.semnuclmed.2021.12.001
pubmed: 35063167