Transport and inhibition mechanism of the human SGLT2-MAP17 glucose transporter.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
06 Dec 2023
Historique:
received: 10 01 2023
accepted: 22 09 2023
medline: 7 12 2023
pubmed: 7 12 2023
entrez: 6 12 2023
Statut: aheadofprint

Résumé

Sodium-glucose cotransporter 2 (SGLT2) is imporant in glucose reabsorption. SGLT2 inhibitors suppress renal glucose reabsorption, therefore reducing blood glucose levels in patients with type 2 diabetes. We and others have developed several SGLT2 inhibitors starting from phlorizin, a natural product. Using cryo-electron microscopy, we present the structures of human (h)SGLT2-MAP17 complexed with five natural or synthetic inhibitors. The four synthetic inhibitors (including canagliflozin) bind the transporter in the outward conformations, while phlorizin binds it in the inward conformation. The phlorizin-hSGLT2 interaction exhibits biphasic kinetics, suggesting that phlorizin alternately binds to the extracellular and intracellular sides. The Na

Identifiants

pubmed: 38057552
doi: 10.1038/s41594-023-01134-0
pii: 10.1038/s41594-023-01134-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Maccari, R. & Ottanà, R. Sodium–glucose cotransporter inhibitors as antidiabetic drugs: current development and future perspectives. J. Med. Chem. 65, 10848–10881 (2022).
pubmed: 35924548 pmcid: 9937539 doi: 10.1021/acs.jmedchem.2c00867
Wright, E. M., Loo, D. D. F. & Hirayama, B. A. Biology of human sodium glucose transporters. Physiol. Rev. 91, 733–794 (2011).
pubmed: 21527736 doi: 10.1152/physrev.00055.2009
Kanai, Y., Lee, W. S., Brown, D. & Hediger, M. A. The human kidney low affinity Na
pubmed: 8282810 pmcid: 293794 doi: 10.1172/JCI116972
Isaji, M. SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int. 79, S14–S19 (2011).
doi: 10.1038/ki.2010.511
Faillie, J.-L. Pharmacological aspects of the safety of gliflozins. Pharmacol. Res. 118, 71–81 (2017).
pubmed: 27389050 doi: 10.1016/j.phrs.2016.07.001
Wright, E. M. SGLT2 inhibitors: physiology and pharmacology. Kidney360 2, 2027–2037 (2021).
pubmed: 35419546 pmcid: 8986039 doi: 10.34067/KID.0002772021
Lim, V. G. et al. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart. JACC Basic Transl. Sci. 4, 15–26 (2019).
pubmed: 30847415 pmcid: 6390729 doi: 10.1016/j.jacbts.2018.10.002
Bhattacharya, S. et al. An exhaustive perspective on structural insights of SGLT2 inhibitors: a novel class of antidiabetic agent. Eur. J. Med. Chem. 204, 112523 (2020).
pubmed: 32717480 doi: 10.1016/j.ejmech.2020.112523
Powell, D. R. et al. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)–mediated absorption of intestinal glucose. J. Pharmacol. Exp. Ther. 345, 250–259 (2013).
pubmed: 23487174 doi: 10.1124/jpet.113.203364
Powell, D. R. et al. LX2761, a sodium/glucose cotransporter 1 inhibitor restricted to the intestine, improves glycemic control in mice. J. Pharmacol. Exp. Ther. 362, 85–97 (2017).
pubmed: 28442582 doi: 10.1124/jpet.117.240820
Sands, A. T. et al. Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care 38, 1181–1188 (2015).
pubmed: 26049551 pmcid: 4831906 doi: 10.2337/dc14-2806
del Alamo, D., Meiler, J. & Mchaourab, H. S. Principles of alternating access in LeuT-fold transporters: commonalities and divergences. J. Mol. Biol. 434, 167746 (2022).
pubmed: 35843285 doi: 10.1016/j.jmb.2022.167746
Gyimesi, G., Pujol-Giménez, J., Kanai, Y. & Hediger, M. A. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflüg. Arch. Eur. J. Physiol. 472, 1177–1206 (2020).
doi: 10.1007/s00424-020-02433-x
Watanabe, A. et al. The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature 468, 988–991 (2010).
pubmed: 21131949 pmcid: 3736980 doi: 10.1038/nature09580
Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na
pubmed: 18599740 pmcid: 3654663 doi: 10.1126/science.1160406
Krishnamurthy, H. & Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481, 469–474 (2012).
pubmed: 22230955 pmcid: 3306218 doi: 10.1038/nature10737
Wahlgren, W. Y. et al. Substrate-bound outward-open structure of a Na
pubmed: 29717135 pmcid: 5931594 doi: 10.1038/s41467-018-04045-7
Han, L. et al. Structure and mechanism of the SGLT family of glucose transporters. Nature 601, 274–279 (2022).
pubmed: 34880492 doi: 10.1038/s41586-021-04211-w
Coady, M. J. et al. MAP17 is a necessary activator of renal Na
pubmed: 27288013 doi: 10.1681/ASN.2015111282
Niu, Y. et al. Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter. Nature 601, 280–284 (2022).
pubmed: 34880493 doi: 10.1038/s41586-021-04212-9
Niu, Y. et al. Structural mechanism of SGLT1 inhibitors. Nat. Commun. 13, 6440 (2022).
pubmed: 36307403 pmcid: 9616851 doi: 10.1038/s41467-022-33421-7
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).
pubmed: 16615909 doi: 10.1016/j.str.2006.01.013
Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).
pubmed: 16369541 doi: 10.1038/nbt1172
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).
pubmed: 34783343 doi: 10.1042/BCJ20210708
Bisignano, P. et al. Inhibitor binding mode and allosteric regulation of Na
pubmed: 30532032 pmcid: 6286348 doi: 10.1038/s41467-018-07700-1
Nomura, S. et al. Novel indole-N-glucoside, TA-1887 as a sodium glucose cotransporter 2 inhibitor for treatment of type 2 diabetes. ACS Med. Chem. Lett. 5, 51–55 (2014).
pubmed: 24900773 doi: 10.1021/ml400339b
Ožegović, B., McNamara, P. D., Goldmann, D. R. & Segal, S. Binding of [
pubmed: 4850751 doi: 10.1016/0014-5793(74)81091-4
Ghezzi, C. et al. SGLT2 inhibitors act from the extracellular surface of the cell membrane. Physiol. Rep. 2, e12058 (2014).
pubmed: 24973332 pmcid: 4208661 doi: 10.14814/phy2.12058
Quick, M., Loo, D. D. F. & Wright, E. M. Neutralization of a conserved amino acid residue in the human Na
pubmed: 11024018 doi: 10.1074/jbc.M005521200
Paz, A. et al. Conformational transitions of the sodium-dependent sugar transporter, vSGLT. Proc. Natl Acad. Sci. USA 115, E2742–E2751 (2018).
pubmed: 29507231 pmcid: 5866573 doi: 10.1073/pnas.1718451115
Meinild, A.-K., Hirayama, B. A., Wright, E. M. & Loo, D. D. F. Fluorescence studies of ligand-induced conformational changes of the Na
pubmed: 11802724 doi: 10.1021/bi011661r
Sala-Rabanal, M. et al. Bridging the gap between structure and kinetics of human SGLT1. Am. J. Physiol. Cell Physiol. 302, C1293–C1305 (2012).
pubmed: 22159082 doi: 10.1152/ajpcell.00397.2011
Cui, W., Niu, Y., Sun, Z., Liu, R. & Chen, L. Structures of human SGLT in the occluded state reveal conformational changes during sugar transport. Nat. Commun. 14, 2920 (2023).
pubmed: 37217492 pmcid: 10203128 doi: 10.1038/s41467-023-38720-1
Forrest, L. R. & Rudnick, G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24, 377–386 (2009).
pubmed: 19996368 doi: 10.1152/physiol.00030.2009
Nomura, S. et al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J. Med. Chem. 53, 6355–6360 (2010).
pubmed: 20690635 doi: 10.1021/jm100332n
Axel, Kirchhofer et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 17, 133–138 (2010).
doi: 10.1038/nsmb.1727
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. https://doi.org/10.1016/j.jsb.2015.08.008 (2015).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr. D 77, 1282–1291 (2021).
doi: 10.1107/S2059798321009475
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Hattori, M., Hibbs, R. E. & Gouaux, E. A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20, 1293–1299 (2012).
pubmed: 22884106 pmcid: 3441139 doi: 10.1016/j.str.2012.06.009
Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).
pubmed: 23579614 doi: 10.1007/s10822-013-9644-8
Lu, C. et al. OPLS4: improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 17, 4291–4300 (2021).
pubmed: 34096718 doi: 10.1021/acs.jctc.1c00302

Auteurs

Masahiro Hiraizumi (M)

Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan. hiraizumi-masahiro4580@g.ecc.u-tokyo.ac.jp.
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan. hiraizumi-masahiro4580@g.ecc.u-tokyo.ac.jp.

Tomoya Akashi (T)

DMPK Research Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.

Kouta Murasaki (K)

Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.

Hiroyuki Kishida (H)

Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.

Taichi Kumanomidou (T)

Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.

Nao Torimoto (N)

Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan.

Osamu Nureki (O)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. nureki@bs.s.u-tokyo.ac.jp.

Ikuko Miyaguchi (I)

Discovery Technology Laboratories Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma, Yokohama, Japan. miyaguchi.ikuko@mv.mt-pharma.co.jp.

Classifications MeSH