Pathology-specific patterns of cerebellar atrophy in neurodegenerative disorders.


Journal

Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978

Informations de publication

Date de publication:
Mar 2024
Historique:
revised: 20 10 2023
received: 27 06 2023
accepted: 23 10 2023
medline: 18 3 2024
pubmed: 18 12 2023
entrez: 18 12 2023
Statut: ppublish

Résumé

Associations of cerebellar atrophy with specific neuropathologies in Alzheimer's disease and related dementias (ADRD) have not been systematically analyzed. This study examined cerebellar gray matter volume across major pathological subtypes of ADRD. Cerebellar gray matter volume was examined using voxel-based morphometry in 309 autopsy-proven ADRD cases and 80 healthy controls. ADRD subtypes included AD, mixed Lewy body disease and AD (LBD-AD), and frontotemporal lobar degeneration (FTLD). Clinical function was assessed using the Clinical Dementia Rating (CDR) scale. Distinct patterns of cerebellar atrophy were observed in all ADRD subtypes. Significant cerebellar gray matter changes appeared in the early stages of most subtypes and the very early stages of AD, LBD-AD, FTLD-TDP type A, and progressive supranuclear palsy. Cortical atrophy positively predicted cerebellar atrophy across all subtypes. Our findings establish pathology-specific profiles of cerebellar atrophy in ADRD and propose cerebellar neuroimaging as a non-invasive biomarker for differential diagnosis and disease monitoring. Cerebellar atrophy was examined in 309 patients with autopsy-proven neurodegeneration. Distinct patterns of cerebellar atrophy are found in all pathological subtypes of Alzheimer's disease and related dementias (ADRD). Cerebellar atrophy is seen in early-stage (Clinical Dementia Rating [CDR] ≤1) AD, Lewy body dementia (LBD), frontotemporal lobar degeneration with tau-positive inclusion (FTLD-tau), and FTLD-transactive response DNA binding protein (FTLD-TDP). Cortical atrophy positively predicts cerebellar atrophy across all neuropathologies.

Identifiants

pubmed: 38109286
doi: 10.1002/alz.13551
doi:

Substances chimiques

tau Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1771-1783

Subventions

Organisme : NIH HHS
ID : P30AG062422
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG057195
Pays : United States
Organisme : NIA NIH HHS
ID : K24 AG053435
Pays : United States
Organisme : NIA NIH HHS
ID : U19 AG063911
Pays : United States
Organisme : NIH HHS
ID : U19AG063911
Pays : United States
Organisme : NIH HHS
ID : U01AG045390
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG019724
Pays : United States
Organisme : NIH HHS
ID : P50AG023501
Pays : United States
Organisme : NIH HHS
ID : P01AG019724
Pays : United States
Organisme : NIH HHS
ID : U01AG057195
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG045390
Pays : United States
Organisme : NIH HHS
ID : R01AG029577
Pays : United States
Organisme : NIH HHS
ID : U54NS092089
Pays : United States
Organisme : NIH HHS
ID : P01AG019724
Pays : United States
Organisme : NIH HHS
ID : P50AG023501
Pays : United States
Organisme : NIH HHS
ID : P30AG062422
Pays : United States
Organisme : NIH HHS
ID : U01AG057195
Pays : United States
Organisme : NIH HHS
ID : U19AG063911
Pays : United States
Organisme : NIH HHS
ID : U01AG045390
Pays : United States
Organisme : NIH HHS
ID : U54NS092089
Pays : United States
Organisme : NIH HHS
ID : R01AG029577
Pays : United States

Informations de copyright

© 2023 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

Références

Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology. 2002;58(11):1615-1621.
Coyle-Gilchrist IT, Dick KM, Patterson K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology. 2016;86(18):1736-1743. doi:10.1212/WNL.0000000000002638
Association As. 2010 Alzheimer's disease facts and figures. Alzheimer's Dement. 2010;6(2):158-194.
Vann Jones SA, O'Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014;44(4):673-683. doi:10.1017/S0033291713000494
Azevedo FA, Carvalho LR, Grinberg LT, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532-541. doi:10.1002/cne.21974
Gellersen HM, Guo CC, O'Callaghan C, Tan RH, Sami S, Hornberger M. Cerebellar atrophy in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psychiatry. 2017;88(9):780-788. doi:10.1136/jnnp-2017-315607
Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Network-selective vulnerability of the human cerebellum to Alzheimer's disease and frontotemporal dementia. Brain. 2016;139(Pt 5):1527-1538. doi:10.1093/brain/aww003
Chen Y, Kumfor F, Landin-Romero R, Irish M, Piguet O. The cerebellum in frontotemporal dementia: a meta-analysis of neuroimaging studies. Neuropsychol Rev. 2019;29(4):450-464. doi:10.1007/s11065-019-09414-7
Jacobs HIL, Hopkins DA, Mayrhofer HC, et al. The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline. Brain. 2018;141(1):37-47. doi:10.1093/brain/awx194
Chen Y, Kumfor F, Landin-Romero R, Irish M, Hodges JR, Piguet O. Cerebellar atrophy and its contribution to cognition in frontotemporal dementias. Ann Neurol. 2018;84(1):98-109. doi:10.1002/ana.25271
Mackenzie IR, Neumann M, Bigio EH, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010;119(1):1-4. doi:10.1007/s00401-009-0612-2
Mackenzie IR, Neumann M, Baborie A, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122(1):111-113. doi:10.1007/s00401-011-0845-8
Lee EB, Porta S, Michael Baer G, et al. Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol. 2017;134(1):65-78. doi:10.1007/s00401-017-1679-9
Chare L, Hodges JR, Leyton CE, et al. New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. J Neurol Neurosurg Psychiatry. 2014;85(8):865-870. doi:10.1136/jnnp-2013-306948
Kim E-J, Vatsavayai S, Seeley WW. Neuropathology of dementia. The Behavioral Neurology of Dementia. Cambridge University Press; 2016:94-122.
Robinson JL, Lee EB, Xie SX, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181-2193. doi:10.1093/brain/awy146
Spina S, La Joie R, Petersen C, et al. Comorbid neuropathological diagnoses in early versus late-onset Alzheimer's disease. Brain. 2021;144(7):2186-2198. doi:10.1093/brain/awab099
Chen Y, Landin-Romero R, Kumfor F, et al. Cerebellar integrity and contributions to cognition in C9orf72-mediated frontotemporal dementia. Cortex. 2022;149:73-84. doi:10.1016/j.cortex.2021.12.014
Rabinovici GD, Seeley WW, Kim EJ, et al. Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen. 2008-2007;22(6):474-488. doi:10.1177/1533317507308779
Boxer AL, Geschwind MD, Belfor N, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol. 2006;63(1):81-86. doi:10.1001/archneur.63.1.81
The National Institute on Aging; Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease. Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. Neurobiol Aging. 1997;18(Suppl 4):S1-S2.
McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):1863-1872. doi:10.1212/01.wnl.0000187889.17253.b1
Montine TJ, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach. Acta Neuropathol. 2012;123(1):1-11. doi:10.1007/s00401-011-0910-3
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112(4):389-404. doi:10.1007/s00401-006-0127-z
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456-2477. doi:10.1093/brain/awr179
Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006-1014. doi:10.1212/WNL.0b013e31821103e6
Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80(5):496-503. doi:10.1212/WNL.0b013e31827f0fd1
Hoglinger GU, Respondek G, Stamelou M, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32(6):853-864. doi:10.1002/mds.26987
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 2011;7(3):263-269. doi:10.1016/j.jalz.2011.03.005
Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2009;1(5):293-299. doi:10.1080/146608200300079536
McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88-100. doi:10.1212/WNL.0000000000004058
Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 2011;7(3):270-279. doi:10.1016/j.jalz.2011.03.008
Geschwind MD. Prion Diseases. Continuum (Minneap Minn). 2015;21(6 Neuroinfectious Disease):1612-1638. doi:10.1212/CON.0000000000000251
Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412-2414. doi:10.1212/wnl.43.11.2412-a
Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566-572. doi:10.1192/bjp.140.6.566
Miyagawa T, Brushaber D, Syrjanen J, et al. Utility of the global CDR((R)) plus NACC FTLD rating and development of scoring rules: data from the ARTFL/LEFFTDS Consortium. Alzheimer's Dement. 2020;16(1):106-117. doi:10.1002/alz.12033
Tartaglia MC, Sidhu M, Laluz V, et al. Sporadic corticobasal syndrome due to FTLD-TDP. Acta Neuropathol. 2010;119(3):365-374. doi:10.1007/s00401-009-0605-1
Forman MS, Farmer J, Johnson JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59(6):952-962. doi:10.1002/ana.20873
Spina S, Brown JA, Deng J, et al. Neuropathological correlates of structural and functional imaging biomarkers in 4-repeat tauopathies. Brain. 2019;142(7):2068-2081. doi:10.1093/brain/awz122
Zhang Y, Schuff N, Ching C, et al. Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer's disease and frontotemporal dementia. Int J Alzheimers Dis. 2011;2011:546871. doi:10.4061/2011/546871
Bettcher BM, Wilheim R, Rigby T, et al. C-reactive protein is related to memory and medial temporal brain volume in older adults. Brain Behav Immun. 2012;26(1):103-108. doi:10.1016/j.bbi.2011.07.240
Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55(3):335-346. doi:10.1002/ana.10825
Andersson J, Jenkinson M, Smith S. Non-linear registration, aka Spatial normalisation. FMRIB Technical report TR07JA2. 2007. http://www.fmrib.ox.ac.uk/analysis/techrep/tr07ja2.pdf
Andersson J, Jenkinson M, Smith S. Non-linear optimisation. FMRIB Technical report TR07JA1. 2007. http://www.fmrib.ox.ac.uk/analysis/techrep/tr07ja1.pdf
Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15(1):1-25.
Diedrichsen J, Zotow E. Surface-based display of volume-averaged cerebellar imaging data. PLoS One. 2015;10(7):e0133402. doi:10.1371/journal.pone.0133402
Diedenhofen B, Musch J. cocor: a comprehensive solution for the statistical comparison of correlations. PLoS One. 2015;10(3):e0121945. doi:10.1371/journal.pone.0121945
Stone-Romero EF, Anderson LE. Relative power of moderated multiple regression and the comparison of subgroup correlation coefficients for detecting moderating effects. J Appl Psychol. 1994;79(3):354.
Dawson JF, Richter AW. Probing three-way interactions in moderated multiple regression: development and application of a slope difference test. J Appl Psychol. 2006;91(4):917-926. doi:10.1037/0021-9010.91.4.917
Tse NY, Chen Y, Irish M, et al. Cerebellar contributions to cognition in corticobasal syndrome and progressive supranuclear palsy. Brain Commun. 2020;2(2):fcaa194. doi:10.1093/braincomms/fcaa194
Toniolo S, Serra L, Olivito G, Marra C, Bozzali M, Cercignani M. Patterns of cerebellar gray matter atrophy across Alzheimer's disease progression. Front Cell Neurosci. 2018;12:430. doi:10.3389/fncel.2018.00430
Habas C, Kamdar N, Nguyen D, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586-8594. doi:10.1523/JNEUROSCI.1868-09.2009
Sang L, Qin W, Liu Y, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage. 2012;61(4):1213-1225. doi:10.1016/j.neuroimage.2012.04.011
King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22(8):1371-1378. doi:10.1038/s41593-019-0436-x
Tse NY, Tu S, Chen Y, et al. Schizotypal traits across the amyotrophic lateral sclerosis-frontotemporal dementia spectrum: pathomechanistic insights. J Neurol. 2022;269(8):4241-4252. doi:10.1007/s00415-022-11049-3
Devenney E, Landin-Romero R, Irish M, et al. The neural correlates and clinical characteristics of psychosis in the frontotemporal dementia continuum and the C9orf72 expansion. NeuroImage Clinical. 2017;13:439-445. doi:10.1016/j.nicl.2016.11.028
Synn A, Mothakunnel A, Kumfor F, et al. Mental states in moving shapes: distinct cortical and subcortical contributions to theory of mind impairments in dementia. J Alzheimers Dis. 2018;61(2):521-535. doi:10.3233/JAD-170809
Whitwell JL, Master AV, Avula R, et al. Clinical correlates of white matter tract degeneration in progressive supranuclear palsy. Arch Neurol. 2011;68(6):753-760. doi:10.1001/archneurol.2011.107
Vitali P, Migliaccio R, Agosta F, Rosen HJ, Geschwind MD. Neuroimaging in dementia. Semin Neurol. 2008;28(4):467-483. doi:10.1055/s-0028-1083695
Ishizawa K, Lin WL, Tiseo P, Honer WG, Davies P, Dickson DW. A qualitative and quantitative study of grumose degeneration in progressive supranuclear palsy. J Neuropathol Exp Neurol. 2000;59(6):513-524. doi:10.1093/jnen/59.6.513
Kovacs GG, Lukic MJ, Irwin DJ, et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 2020;140(2):99-119. doi:10.1007/s00401-020-02158-2
Kouri N, Murray ME, Hassan A, et al. Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain. 2011;134(Pt 11):3264-3275. doi:10.1093/brain/awr234
Passamonti L, Vazquez Rodriguez P, Hong YT, et al. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy. Brain. 2017;140(3):781-791. doi:10.1093/brain/aww340
Kawakami I, Arai T, Hasegawa M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol. 2019;138(5):751-770. doi:10.1007/s00401-019-02077-x
Geser F, Martinez-Lage M, Robinson J, et al. Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol. 2009;66(2):180-189. doi:10.1001/archneurol.2008.558
Kaliszewska A, Allison J, Col TT, Shaw C, Arias N. Elucidating the role of cerebellar synaptic dysfunction in C9orf72-ALS/FTD-a systematic review and meta-analysis. Cerebellum. 2022;21(4):681-714. doi:10.1007/s12311-021-01320-0
Boeve BF, Boylan KB, Graff-Radford NR, et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain. 2012;135(Pt 3):765-783. doi:10.1093/brain/aws004
Simon-Sanchez J, Dopper EG, Cohn-Hokke PE, et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain. 2012;135(Pt 3):723-735. doi:10.1093/brain/awr353
Hsiung GY, DeJesus-Hernandez M, Feldman HH, et al. Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain. 2012;135(Pt 3):709-722. doi:10.1093/brain/awr354
Mahoney CJ, Beck J, Rohrer JD, et al. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain. 2012;135(Pt 3):736-750. doi:10.1093/brain/awr361
Gentier RJ, Verheijen BM, Zamboni M, et al. Localization of mutant ubiquitin in the brain of a transgenic mouse line with proteasomal inhibition and its validation at specific sites in Alzheimer's disease. Front Neuroanat. 2015;9:26. doi:10.3389/fnana.2015.00026
Thal DR, Rüb U, Orantes M, Braak H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791-1800.
Ling H, Kovacs GG, Vonsattel JP, et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain. 2016;139(Pt 12):3237-3252. doi:10.1093/brain/aww256
Golbe LI, Ohman-Strickland PA. A clinical rating scale for progressive supranuclear palsy. Brain. 2007;130(Pt 6):1552-1565. doi:10.1093/brain/awm032
Lang AE, Stebbins GT, Wang P, et al. The Cortical Basal ganglia Functional Scale (CBFS): development and preliminary validation. Parkinsonism Relat Disord. 2020;79:121-126. doi:10.1016/j.parkreldis.2020.08.021

Auteurs

Yu Chen (Y)

Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.

Salvatore Spina (S)

Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.

Patrick Callahan (P)

Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.

Lea T Grinberg (LT)

Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.
Department of Pathology, University of California San Francisco, San Francisco, California, USA.

William W Seeley (WW)

Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.
Department of Pathology, University of California San Francisco, San Francisco, California, USA.

Howard J Rosen (HJ)

Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.

Joel H Kramer (JH)

Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.

Bruce L Miller (BL)

Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.

Katherine P Rankin (KP)

Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH