Generation of iPSC lines (KAIMRCi003A, KAIMRCi003B) from a Saudi patient with Dravet syndrome carrying homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A.

CPLX1 variant Dravet syndrome Epileptic encephalopathy SCN9A variant iPSC

Journal

Human cell
ISSN: 1749-0774
Titre abrégé: Hum Cell
Pays: Japan
ID NLM: 8912329

Informations de publication

Date de publication:
19 Dec 2023
Historique:
received: 26 09 2023
accepted: 15 11 2023
medline: 19 12 2023
pubmed: 19 12 2023
entrez: 19 12 2023
Statut: aheadofprint

Résumé

The most prevalent form of epileptic encephalopathy is Dravet syndrome (DRVT), which is triggered by the pathogenic variant SCN1A in 80% of cases. iPSCs with different SCN1A mutations have been constructed by several groups to model DRVT syndrome. However, no studies involving DRVT-iPSCs with rare genetic variants have been conducted. Here, we established two DRVT-iPSC lines harboring a homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A gene. Therefore, the derivation of these iPSC lines provides a unique cellular platform to dissect the molecular mechanisms underlying the cellular dysfunctions consequent to CPLX1 and SCN9A mutations.

Identifiants

pubmed: 38110787
doi: 10.1007/s13577-023-01016-z
pii: 10.1007/s13577-023-01016-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Delahaye-Duriez A, Srivastava P, Shkura K, Langley SR, Laaniste L, Moreno-Moral A, Danis B, Mazzuferi M, Foerch P, Gazina EV, Richards K. Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biol. 2016;17(1):1–8.
doi: 10.1186/s13059-016-1097-7
Symonds JD, Zuberi SM, Johnson MR. Advances in epilepsy gene discovery and implications for epilepsy diagnosis and treatment. Curr Opin Neurol. 2017;30(2):193–9.
pubmed: 28212175 doi: 10.1097/WCO.0000000000000433
Scheffer IE, Liao J. Deciphering the concepts behind “epileptic encephalopathy” and “developmental and epileptic encephalopathy.” Eur J Paediatr Neurol. 2020;1(24):11–4.
doi: 10.1016/j.ejpn.2019.12.023
Catarino CB, Liu JY, Liagkouras I, Gibbons VS, Labrum RW, Ellis R, Woodward C, Davis MB, Smith SJ, Cross JH, Appleton RE. Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology. Brain. 2011;134(10):2982–3010.
pubmed: 21719429 pmcid: 3187538 doi: 10.1093/brain/awr129
Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar OJ. Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol. 2005;1(95):71–102.
Dravet C. The core Dravet syndrome phenotype. Epilepsia. 2011;52:3–9.
pubmed: 21463272 doi: 10.1111/j.1528-1167.2011.02994.x
Bechi G, Scalmani P, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M. Pure haploinsufficiency for Dravet syndrome NaV1.1 (SCN1A) sodium channel truncating mutations. Epilepsia. 2012;53(1):87–100.
pubmed: 22150645 doi: 10.1111/j.1528-1167.2011.03346.x
Chopra R, Isom LL. Untangling the Dravet syndrome seizure network: the changing face of a rare genetic epilepsy: the paradox of Dravet syndrome. Epilepsy Curr. 2014;14(2):86–9.
pubmed: 24872787 pmcid: 4010885 doi: 10.5698/1535-7597-14.2.86
Depienne C, Trouillard O, Saint-Martin C, Gourfinkel-An I, Bouteiller D, Carpentier W, Keren B, Abert B, Gautier A, Baulac S, Arzimanoglou A. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet. 2009;46(3):183–91.
pubmed: 18930999 doi: 10.1136/jmg.2008.062323
Harkin LA, McMahon JM, Iona X, Dibbens L, Pelekanos JT, Zuberi SM, Sadleir LG, Andermann E, Gill D, Farrell K, Connolly M. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain. 2007;130(3):843–52.
pubmed: 17347258 doi: 10.1093/brain/awm002
Lorincz A, Nusser Z. Molecular identity of dendritic voltage-gated sodium channels. Science. 2010;328(5980):906–9.
pubmed: 20466935 pmcid: 3546315 doi: 10.1126/science.1187958
Scheffer IE, Zhang YH, Jansen FE, Dibbens L. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev. 2009;31(5):394–400.
pubmed: 19203856 doi: 10.1016/j.braindev.2009.01.001
Catterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. J Physiol. 2010;588(11):1849–59.
pubmed: 20194124 pmcid: 2901973 doi: 10.1113/jphysiol.2010.187484
Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia. 2010;51(9):1650–8.
pubmed: 20831750 pmcid: 2937162 doi: 10.1111/j.1528-1167.2010.02640.x
Peiffer A, Thompson J, Charlier C, Otterud B, Varvil T, Pappas C, Barnitz C, Gruenthal K, Kuhn R, Leppert M. A locus for febrile seizures (FEB3) maps to chromosome 2q23-24. Ann Neurol. 1999;46(4):671–8.
pubmed: 10514109 doi: 10.1002/1531-8249(199910)46:4<671::AID-ANA20>3.0.CO;2-5
Singh NA, Pappas C, Dahle EJ, Claes LR, Pruess TH, De Jonghe P, Thompson J, Dixon M, Gurnett C, Peiffer A, White HS. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet. 2009;5(9): e1000649.
pubmed: 19763161 pmcid: 2730533 doi: 10.1371/journal.pgen.1000649
Mulley JC, Hodgson B, McMahon JM, Iona X, Bellows S, Mullen SA, Farrell K, Mackay M, Sadleir L, Bleasel A, Gill D. Role of the sodium channel SCN 9A in genetic epilepsy with febrile seizures plus and Dravet syndrome. Epilepsia. 2013;54(9):e122–6.
pubmed: 23895530 doi: 10.1111/epi.12323
Ding J, Li X, Tian H, Wang L, Guo B, Wang Y, Li W, Wang F, Sun T. SCN1A mutation—beyond Dravet syndrome: a systematic review and narrative synthesis. Front Neurol. 2021;24(12): 743726.
doi: 10.3389/fneur.2021.743726
Trimbuch T, Rosenmund C. Should I stop or should I go? The role of complexin in neurotransmitter release. Nat Rev Neurosci. 2016;17(2):118–25.
pubmed: 26806630 doi: 10.1038/nrn.2015.16
Archer DA, Graham ME, Burgoyne RD. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis. J Biol Chem. 2002;277(21):18249–52.
pubmed: 11929859 doi: 10.1074/jbc.C200166200
Karaca E, Harel T, Pehlivan D, Jhangiani SN, Gambin T, Akdemir ZC, Gonzaga-Jauregui C, Erdin S, Bayram Y, Campbell IM, Hunter JV. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron. 2015;88(3):499–513.
pubmed: 26539891 pmcid: 4824012 doi: 10.1016/j.neuron.2015.09.048
Javaid MS, Tan T, Dvir N, Anderson A, O’Brien TJ, Kwan P, Antonic-Baker A. Human in vitro models of epilepsy using embryonic and induced pluripotent stem cells. Cells. 2022;11(24):3957.
pubmed: 36552721 pmcid: 9776452 doi: 10.3390/cells11243957
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.
pubmed: 18035408 doi: 10.1016/j.cell.2007.11.019
Sun Y, Paşca SP, Portmann T, Goold C, Worringer KA, Guan W, Chan KC, Gai H, Vogt D, Chen YJ, Mao R. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet syndrome patients. Elife. 2016;5:e13073.
pubmed: 27458797 pmcid: 4961470 doi: 10.7554/eLife.13073
Schuster J, Laan L, Klar J, Jin Z, Huss M, Korol S, Noraddin FH, Sobol M, Birnir B, Dahl N. Transcriptomes of Dravet syndrome iPSC derived GABAergic cells reveal dysregulated pathways for chromatin remodeling and neurodevelopment. Neurobiol Dis. 2019;1(132): 104583.
doi: 10.1016/j.nbd.2019.104583
Zayat V, Kuczynska Z, Liput M, Metin E, Rzonca-Niewczas S, Smyk M, Mazurczak T, Goszczanska-Ciuchta A, Leszczynski P, Hoffman-Zacharska D, Buzanska L. The generation of human iPSC lines from three individuals with dravet syndrome and characterization of neural differentiation markers in iPSC-derived ventral forebrain organoid model. Cells. 2023;12(2):339.
pubmed: 36672274 pmcid: 9856691 doi: 10.3390/cells12020339
Tai C, Abe Y, Westenbroek RE, Scheuer T, Catterall WA. Impaired excitability of somatostatin-and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc Natl Acad Sci. 2014;111(30):E3139–48.
pubmed: 25024183 pmcid: 4121787 doi: 10.1073/pnas.1411131111
Alsayegh KN, Sheridan SD, Iyer S, Rao RR. Knockdown of CDK2AP1 in human embryonic stem cells reduces the threshold of differentiation. PLoS ONE. 2018;13(5): e0196817.
pubmed: 29734353 pmcid: 5937771 doi: 10.1371/journal.pone.0196817
Al-Shehri M, Baadhaim M, Jamalalddin S, Aboalola D, Daghestani M, AlZahrani H, Malibari D, Mubaraki M, Aldubayan K, AlBalwi M, Alsayegh K. Generation of induced pluripotent stem cell Line KAIMRCi001-A by reprogramming erythroid progenitors from peripheral blood of a healthy Saudi donor. Stem Cell Res. 2021;1(56): 102548.
doi: 10.1016/j.scr.2021.102548
Soejitno A, Prayudi PK. The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab. 2011;2(5):197–210.
pubmed: 23148185 pmcid: 3474639 doi: 10.1177/2042018811420198
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113(5):631–42.
pubmed: 12787504 doi: 10.1016/S0092-8674(03)00393-3
Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113(5):643–55.
pubmed: 12787505 doi: 10.1016/S0092-8674(03)00392-1
Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460(7251):118–22.
pubmed: 19571885 doi: 10.1038/nature08113
Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development. 2005;132:885–96.
pubmed: 15673569 doi: 10.1242/dev.01670
Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol. 2003;23(8):2699–708.
pubmed: 12665572 pmcid: 152544 doi: 10.1128/MCB.23.8.2699-2708.2003
Okumura-Nakanishi S, Saito M, Niwa H, Ishikawa F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem. 2005;280(7):5307–17.
pubmed: 15557334 doi: 10.1074/jbc.M410015200
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.
pubmed: 18029452 doi: 10.1126/science.1151526
Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S, Zhou Q, Plath K. Role of the murine reprogramming factors in the induction of pluripotency. Cell. 2009;136(2):364–77.
pubmed: 19167336 pmcid: 3273494 doi: 10.1016/j.cell.2009.01.001
Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell. 2012;151(5):994–1004.
pubmed: 23159369 pmcid: 3508134 doi: 10.1016/j.cell.2012.09.045
Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar L, Zou C, Zhang YA, Tong J, Cheng L. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 2011;21(3):518–29.
pubmed: 21243013 pmcid: 3193421 doi: 10.1038/cr.2011.12
Alowaysi M, Lehmann R, Al-Shehri M, Baadheim M, Alzahrani H, Aboalola D, et al. HLA-based banking of human induced pluripotent stem cells in Saudi Arabia. Cold Spring Harbor Lab. 2023. https://doi.org/10.1101/2023.09.16.557826 .
doi: 10.1101/2023.09.16.557826
Bang JS, Choi NY, Lee M, Ko K, Lee HJ, Park YS, Jeong D, Chung HM, Ko K. Optimization of episomal reprogramming for generation of human induced pluripotent stem cells from fibroblasts. Anim Cells Syst. 2018;22(2):132–9.
doi: 10.1080/19768354.2018.1451367
Drozd AM, Walczak MP, Piaskowski S, Stoczynska-Fidelus E, Rieske P, Grzela DP. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res Ther. 2015;6:1–7.
doi: 10.1186/s13287-015-0112-3
Redler S, Strom TM, Wieland T, Cremer K, Engels H, Distelmaier F, Schaper J, Küchler A, Lemke JR, Jeschke S, Schreyer N. Variants in CPLX1 in two families with autosomal-recessive severe infantile myoclonic epilepsy and ID. Eur J Hum Genet. 2017;25(7):889–93.
pubmed: 28422131 pmcid: 5520065 doi: 10.1038/ejhg.2017.52
Teo AK, Arnold SJ, Trotter MW, Brown S, Ang LT, Chng Z, Robertson EJ, Dunn NR, Vallier L. Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes Dev. 2011;25(3):238–50.
pubmed: 21245162 pmcid: 3034899 doi: 10.1101/gad.607311

Auteurs

Maryam Alowaysi (M)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

Mohammad Al-Shehri (M)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

Amani Badkok (A)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

Hanouf Attas (H)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

Doaa Aboalola (D)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

Moayad Baadhaim (M)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

Hajar Alzahrani (H)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

Mustafa Daghestani (M)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
Department of Pathology and Laboratory Medicine, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia.

Asima Zia (A)

Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Khalid Al-Ghamdi (K)

Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia.

Asayil Al-Ghamdi (A)

Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia.

Samer Zakri (S)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

Sihem Aouabdi (S)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

Jesper Tegner (J)

Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Khaled Alsayegh (K)

King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia. alsayeghkn@Kaimrc.edu.sa.

Classifications MeSH