Generation of iPSC lines (KAIMRCi003A, KAIMRCi003B) from a Saudi patient with Dravet syndrome carrying homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A.
CPLX1 variant
Dravet syndrome
Epileptic encephalopathy
SCN9A variant
iPSC
Journal
Human cell
ISSN: 1749-0774
Titre abrégé: Hum Cell
Pays: Japan
ID NLM: 8912329
Informations de publication
Date de publication:
19 Dec 2023
19 Dec 2023
Historique:
received:
26
09
2023
accepted:
15
11
2023
medline:
19
12
2023
pubmed:
19
12
2023
entrez:
19
12
2023
Statut:
aheadofprint
Résumé
The most prevalent form of epileptic encephalopathy is Dravet syndrome (DRVT), which is triggered by the pathogenic variant SCN1A in 80% of cases. iPSCs with different SCN1A mutations have been constructed by several groups to model DRVT syndrome. However, no studies involving DRVT-iPSCs with rare genetic variants have been conducted. Here, we established two DRVT-iPSC lines harboring a homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A gene. Therefore, the derivation of these iPSC lines provides a unique cellular platform to dissect the molecular mechanisms underlying the cellular dysfunctions consequent to CPLX1 and SCN9A mutations.
Identifiants
pubmed: 38110787
doi: 10.1007/s13577-023-01016-z
pii: 10.1007/s13577-023-01016-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s).
Références
Delahaye-Duriez A, Srivastava P, Shkura K, Langley SR, Laaniste L, Moreno-Moral A, Danis B, Mazzuferi M, Foerch P, Gazina EV, Richards K. Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biol. 2016;17(1):1–8.
doi: 10.1186/s13059-016-1097-7
Symonds JD, Zuberi SM, Johnson MR. Advances in epilepsy gene discovery and implications for epilepsy diagnosis and treatment. Curr Opin Neurol. 2017;30(2):193–9.
pubmed: 28212175
doi: 10.1097/WCO.0000000000000433
Scheffer IE, Liao J. Deciphering the concepts behind “epileptic encephalopathy” and “developmental and epileptic encephalopathy.” Eur J Paediatr Neurol. 2020;1(24):11–4.
doi: 10.1016/j.ejpn.2019.12.023
Catarino CB, Liu JY, Liagkouras I, Gibbons VS, Labrum RW, Ellis R, Woodward C, Davis MB, Smith SJ, Cross JH, Appleton RE. Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology. Brain. 2011;134(10):2982–3010.
pubmed: 21719429
pmcid: 3187538
doi: 10.1093/brain/awr129
Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar OJ. Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol. 2005;1(95):71–102.
Dravet C. The core Dravet syndrome phenotype. Epilepsia. 2011;52:3–9.
pubmed: 21463272
doi: 10.1111/j.1528-1167.2011.02994.x
Bechi G, Scalmani P, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M. Pure haploinsufficiency for Dravet syndrome NaV1.1 (SCN1A) sodium channel truncating mutations. Epilepsia. 2012;53(1):87–100.
pubmed: 22150645
doi: 10.1111/j.1528-1167.2011.03346.x
Chopra R, Isom LL. Untangling the Dravet syndrome seizure network: the changing face of a rare genetic epilepsy: the paradox of Dravet syndrome. Epilepsy Curr. 2014;14(2):86–9.
pubmed: 24872787
pmcid: 4010885
doi: 10.5698/1535-7597-14.2.86
Depienne C, Trouillard O, Saint-Martin C, Gourfinkel-An I, Bouteiller D, Carpentier W, Keren B, Abert B, Gautier A, Baulac S, Arzimanoglou A. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet. 2009;46(3):183–91.
pubmed: 18930999
doi: 10.1136/jmg.2008.062323
Harkin LA, McMahon JM, Iona X, Dibbens L, Pelekanos JT, Zuberi SM, Sadleir LG, Andermann E, Gill D, Farrell K, Connolly M. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain. 2007;130(3):843–52.
pubmed: 17347258
doi: 10.1093/brain/awm002
Lorincz A, Nusser Z. Molecular identity of dendritic voltage-gated sodium channels. Science. 2010;328(5980):906–9.
pubmed: 20466935
pmcid: 3546315
doi: 10.1126/science.1187958
Scheffer IE, Zhang YH, Jansen FE, Dibbens L. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev. 2009;31(5):394–400.
pubmed: 19203856
doi: 10.1016/j.braindev.2009.01.001
Catterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. J Physiol. 2010;588(11):1849–59.
pubmed: 20194124
pmcid: 2901973
doi: 10.1113/jphysiol.2010.187484
Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia. 2010;51(9):1650–8.
pubmed: 20831750
pmcid: 2937162
doi: 10.1111/j.1528-1167.2010.02640.x
Peiffer A, Thompson J, Charlier C, Otterud B, Varvil T, Pappas C, Barnitz C, Gruenthal K, Kuhn R, Leppert M. A locus for febrile seizures (FEB3) maps to chromosome 2q23-24. Ann Neurol. 1999;46(4):671–8.
pubmed: 10514109
doi: 10.1002/1531-8249(199910)46:4<671::AID-ANA20>3.0.CO;2-5
Singh NA, Pappas C, Dahle EJ, Claes LR, Pruess TH, De Jonghe P, Thompson J, Dixon M, Gurnett C, Peiffer A, White HS. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet. 2009;5(9): e1000649.
pubmed: 19763161
pmcid: 2730533
doi: 10.1371/journal.pgen.1000649
Mulley JC, Hodgson B, McMahon JM, Iona X, Bellows S, Mullen SA, Farrell K, Mackay M, Sadleir L, Bleasel A, Gill D. Role of the sodium channel SCN 9A in genetic epilepsy with febrile seizures plus and Dravet syndrome. Epilepsia. 2013;54(9):e122–6.
pubmed: 23895530
doi: 10.1111/epi.12323
Ding J, Li X, Tian H, Wang L, Guo B, Wang Y, Li W, Wang F, Sun T. SCN1A mutation—beyond Dravet syndrome: a systematic review and narrative synthesis. Front Neurol. 2021;24(12): 743726.
doi: 10.3389/fneur.2021.743726
Trimbuch T, Rosenmund C. Should I stop or should I go? The role of complexin in neurotransmitter release. Nat Rev Neurosci. 2016;17(2):118–25.
pubmed: 26806630
doi: 10.1038/nrn.2015.16
Archer DA, Graham ME, Burgoyne RD. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis. J Biol Chem. 2002;277(21):18249–52.
pubmed: 11929859
doi: 10.1074/jbc.C200166200
Karaca E, Harel T, Pehlivan D, Jhangiani SN, Gambin T, Akdemir ZC, Gonzaga-Jauregui C, Erdin S, Bayram Y, Campbell IM, Hunter JV. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease. Neuron. 2015;88(3):499–513.
pubmed: 26539891
pmcid: 4824012
doi: 10.1016/j.neuron.2015.09.048
Javaid MS, Tan T, Dvir N, Anderson A, O’Brien TJ, Kwan P, Antonic-Baker A. Human in vitro models of epilepsy using embryonic and induced pluripotent stem cells. Cells. 2022;11(24):3957.
pubmed: 36552721
pmcid: 9776452
doi: 10.3390/cells11243957
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.
pubmed: 18035408
doi: 10.1016/j.cell.2007.11.019
Sun Y, Paşca SP, Portmann T, Goold C, Worringer KA, Guan W, Chan KC, Gai H, Vogt D, Chen YJ, Mao R. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet syndrome patients. Elife. 2016;5:e13073.
pubmed: 27458797
pmcid: 4961470
doi: 10.7554/eLife.13073
Schuster J, Laan L, Klar J, Jin Z, Huss M, Korol S, Noraddin FH, Sobol M, Birnir B, Dahl N. Transcriptomes of Dravet syndrome iPSC derived GABAergic cells reveal dysregulated pathways for chromatin remodeling and neurodevelopment. Neurobiol Dis. 2019;1(132): 104583.
doi: 10.1016/j.nbd.2019.104583
Zayat V, Kuczynska Z, Liput M, Metin E, Rzonca-Niewczas S, Smyk M, Mazurczak T, Goszczanska-Ciuchta A, Leszczynski P, Hoffman-Zacharska D, Buzanska L. The generation of human iPSC lines from three individuals with dravet syndrome and characterization of neural differentiation markers in iPSC-derived ventral forebrain organoid model. Cells. 2023;12(2):339.
pubmed: 36672274
pmcid: 9856691
doi: 10.3390/cells12020339
Tai C, Abe Y, Westenbroek RE, Scheuer T, Catterall WA. Impaired excitability of somatostatin-and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc Natl Acad Sci. 2014;111(30):E3139–48.
pubmed: 25024183
pmcid: 4121787
doi: 10.1073/pnas.1411131111
Alsayegh KN, Sheridan SD, Iyer S, Rao RR. Knockdown of CDK2AP1 in human embryonic stem cells reduces the threshold of differentiation. PLoS ONE. 2018;13(5): e0196817.
pubmed: 29734353
pmcid: 5937771
doi: 10.1371/journal.pone.0196817
Al-Shehri M, Baadhaim M, Jamalalddin S, Aboalola D, Daghestani M, AlZahrani H, Malibari D, Mubaraki M, Aldubayan K, AlBalwi M, Alsayegh K. Generation of induced pluripotent stem cell Line KAIMRCi001-A by reprogramming erythroid progenitors from peripheral blood of a healthy Saudi donor. Stem Cell Res. 2021;1(56): 102548.
doi: 10.1016/j.scr.2021.102548
Soejitno A, Prayudi PK. The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab. 2011;2(5):197–210.
pubmed: 23148185
pmcid: 3474639
doi: 10.1177/2042018811420198
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113(5):631–42.
pubmed: 12787504
doi: 10.1016/S0092-8674(03)00393-3
Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113(5):643–55.
pubmed: 12787505
doi: 10.1016/S0092-8674(03)00392-1
Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460(7251):118–22.
pubmed: 19571885
doi: 10.1038/nature08113
Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development. 2005;132:885–96.
pubmed: 15673569
doi: 10.1242/dev.01670
Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol. 2003;23(8):2699–708.
pubmed: 12665572
pmcid: 152544
doi: 10.1128/MCB.23.8.2699-2708.2003
Okumura-Nakanishi S, Saito M, Niwa H, Ishikawa F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem. 2005;280(7):5307–17.
pubmed: 15557334
doi: 10.1074/jbc.M410015200
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.
pubmed: 18029452
doi: 10.1126/science.1151526
Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S, Zhou Q, Plath K. Role of the murine reprogramming factors in the induction of pluripotency. Cell. 2009;136(2):364–77.
pubmed: 19167336
pmcid: 3273494
doi: 10.1016/j.cell.2009.01.001
Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell. 2012;151(5):994–1004.
pubmed: 23159369
pmcid: 3508134
doi: 10.1016/j.cell.2012.09.045
Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar L, Zou C, Zhang YA, Tong J, Cheng L. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 2011;21(3):518–29.
pubmed: 21243013
pmcid: 3193421
doi: 10.1038/cr.2011.12
Alowaysi M, Lehmann R, Al-Shehri M, Baadheim M, Alzahrani H, Aboalola D, et al. HLA-based banking of human induced pluripotent stem cells in Saudi Arabia. Cold Spring Harbor Lab. 2023. https://doi.org/10.1101/2023.09.16.557826 .
doi: 10.1101/2023.09.16.557826
Bang JS, Choi NY, Lee M, Ko K, Lee HJ, Park YS, Jeong D, Chung HM, Ko K. Optimization of episomal reprogramming for generation of human induced pluripotent stem cells from fibroblasts. Anim Cells Syst. 2018;22(2):132–9.
doi: 10.1080/19768354.2018.1451367
Drozd AM, Walczak MP, Piaskowski S, Stoczynska-Fidelus E, Rieske P, Grzela DP. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res Ther. 2015;6:1–7.
doi: 10.1186/s13287-015-0112-3
Redler S, Strom TM, Wieland T, Cremer K, Engels H, Distelmaier F, Schaper J, Küchler A, Lemke JR, Jeschke S, Schreyer N. Variants in CPLX1 in two families with autosomal-recessive severe infantile myoclonic epilepsy and ID. Eur J Hum Genet. 2017;25(7):889–93.
pubmed: 28422131
pmcid: 5520065
doi: 10.1038/ejhg.2017.52
Teo AK, Arnold SJ, Trotter MW, Brown S, Ang LT, Chng Z, Robertson EJ, Dunn NR, Vallier L. Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes Dev. 2011;25(3):238–50.
pubmed: 21245162
pmcid: 3034899
doi: 10.1101/gad.607311