Quantitative brain morphometry identifies cerebellar, cortical, and subcortical gray and white matter atrophy in late-onset Tay-Sachs disease.
GM2-gangliosidosis
MRI
brain atrophy
late-onset Tay-Sachs disease
Journal
Journal of inherited metabolic disease
ISSN: 1573-2665
Titre abrégé: J Inherit Metab Dis
Pays: United States
ID NLM: 7910918
Informations de publication
Date de publication:
Mar 2024
Mar 2024
Historique:
revised:
08
11
2023
received:
04
09
2023
accepted:
05
12
2023
medline:
18
3
2024
pubmed:
19
12
2023
entrez:
19
12
2023
Statut:
ppublish
Résumé
Cerebellar atrophy is a characteristic sign of late-onset Tay-Sachs disease (LOTS). Other structural neuroimaging abnormalities are inconsistently reported. Our study aimed to perform a detailed whole-brain analysis and quantitatively characterize morphometric changes in LOTS patients. Fourteen patients (8 M/6F) with LOTS from three centers were included in this retrospective study. For morphometric brain analyses, we used deformation-based morphometry, voxel-based morphometry, surface-based morphometry, and spatially unbiased cerebellar atlas template. The quantitative whole-brain morphometric analysis confirmed the finding of profound pontocerebellar atrophy with most affected cerebellar lobules V and VI in LOTS patients. Additionally, the atrophy of structures mainly involved in motor control, including bilateral ventral and lateral thalamic nuclei, primary motor and sensory cortex, supplementary motor area, and white matter regions containing corticospinal tract, was present. The atrophy of the right amygdala, hippocampus, and regions of occipital, parietal and temporal white matter was also observed in LOTS patients in contrast with controls (p < 0.05, FWE corrected). Patients with dysarthria and those initially presenting with ataxia had more severe cerebellar atrophy. Our results show predominant impairment of cerebellar regions responsible for speech and hand motor function in LOTS patients. Widespread morphological changes of motor cortical and subcortical regions and tracts in white matter indicate abnormalities in central motor circuits likely coresponsible for impaired speech and motor function.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
327-339Subventions
Organisme : Foundation for the National Institutes of Health
ID : NIH U54NS065768
Organisme : Million Dollar Bike Ride from the University of Pennsylvania
ID : MDBR-18-126-NTSAD
Organisme : Ministerstvo Zdravotnictví Ceské Republiky
ID : MH CZ-DRO-VFN64165
Organisme : Roche
ID : NTC03706118
Organisme : National Institute for Neurological Research, Programme EXCELES
ID : LX22NPO5107
Organisme : Czech Ministry of Health
ID : NU21-04-00535
Informations de copyright
© 2023 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.
Références
Leal AF, Benincore-Flórez E, Solano-Galarza D, et al. Gm2 gangliosidoses: clinical features, pathophysiological aspects, and current therapies. Int J Mol Sci. 2020;21(17):1-27. doi:10.3390/ijms21176213
Toro C, Zainab M, Tifft CJ. The GM2 gangliosidoses: unlocking the mysteries of pathogenesis and treatment. Neurosci Lett. 2021;764:136195. doi:10.1016/j.neulet.2021.136195
Barritt AW, Anderson SJ, Leigh PN, Ridha BH. Late-onset Tay-Sachs disease. Pract Neurol. 2017;17(5):396-399. doi:10.1136/practneurol-2017-001665
Mitsumoto H, Sliman RJ, Schafer IA, et al. Motor neuron disease and adult hexosaminidase a deficiency in two families: evidence for multisystem degeneration. Ann Neurol. 1985;17(4):378-385. doi:10.1002/ana.410170413
Steiner KM, Brenck J, Goericke S, Timmann D. Cerebellar atrophy and muscle weakness: late-onset Tay-Sachs disease outside Jewish populations. BMJ Case Rep. 2016;2016:2-3. doi:10.1136/bcr-2016-214634
Peters AS, Markovic K, Schramm A, Schwab S, Heuss D. Late onset hexosaminidase a deficiency in a young adult. Eur J Neurol. 2008;15(7):2007-2008. doi:10.1111/j.1468-1331.2008.02170.x
Deik A, Saunders-Pullman R. Atypical presentation of late-onset Tay-sachs disease. Muscle Nerve. 2014;49(5):768-771. doi:10.1002/mus.24146
Hölzer HT, Boschann F, Hennermann JB, et al. Cerebellar atrophy on top of motor neuron compromise as indicator of late-onset GM2 gangliosidosis. J Neurol. 2021;268(6):2259-2262. doi:10.1007/s00415-021-10492-y
Neudorfer O, Pastores GM, Zeng BJ, Gianutsos J, Zaroff CM, Kolodny EH. Late-onset Tay-Sachs disease: phenotypic characterization and genotypic correlation in 21 affected patients. Genet Med. 2005;7(2):119-123. doi:10.1097/01.GIM.0000154300.84107.75
Streifler J, Golomb M, Gadoth N. Psychiatric features of adult GM2 gangliosidosis. Br J Psychiatry. 1989;155:410-413. doi:10.1192/bjp.155.3.410
Májovská J, Hennig A, Nestrasil I, et al. Pontocerebellar atrophy is the hallmark neuroradiological finding in late-onset Tay-Sachs disease. Neurol Sci. 2022;43(5):3273-3281. doi:10.1007/s10072-021-05757-3
Rowe OE, Rangaprakash D, Weerasekera A, et al. Magnetic resonance imaging and spectroscopy in late-onset GM2-gangliosidosis. Mol Genet Metab. 2021;133(4):386-396. doi:10.1016/j.ymgme.2021.06.008
Inglese M, Nusbaum AO, Pastores GM, Gianutsos J, Kolodny EH, Gonen O. MR imaging and proton spectroscopy of neuronal injury in late-onset G M2 gangliosidosis. Am J Neuroradiol. 2005;26(8):2037-2042.
Nestrasil I, Ahmed A, Utz JM, Rudser K, Whitley CB, Jarnes-Utz JR. Distinct progression patterns of brain disease in infantile and juvenile gangliosidoses: volumetric quantitative MRI study. Mol Genet Metab. 2018;123(2):97-104. doi:10.1016/j.ymgme.2017.12.432
Gaser C, Nenadic I, Buchsbaum BR, Hazlett EA, Buchsbaum MS. Deformation-based morphometry and its relation to conventional volumetry of brain lateral ventricles in MRI. NeuroImage. 2001;13(6):1140-1145. doi:10.1006/nimg.2001.0771
Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. NeuroImage. 2013;65:336-348. doi:10.1016/j.neuroimage.2012.09.050
Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33(1):127-138. doi:10.1016/j.neuroimage.2006.05.056
Diedrichsen J, Zotow E. Surface-based display of volume-averaged cerebellar imaging data. PLoS One. 2015;10(7):1-18. doi:10.1371/journal.pone.0133402
Kalincik T, Vaneckova M, Tyblova M, et al. Volumetric MRI markers and predictors of disease activity in early multiple sclerosis: a longitudinal cohort study. PLoS One. 2012;7(11):1-8. doi:10.1371/journal.pone.0050101
Salimi-Khorshidi G, Smith SM, Nichols TE. Adjusting the effect of nonstationarity in cluster-based and TFCE inference. NeuroImage. 2011;54(3):2006-2019. doi:10.1016/j.neuroimage.2010.09.088
Voevodskaya O. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease. Front Aging Neurosci. 2014;6:264. doi:10.3389/fnagi.2014.00264
Lindig T, Bender B, Kumar VJ, et al. Pattern of cerebellar atrophy in Friedreich's ataxia-using the SUIT template. Cerebellum. 2019;18(3):435-447. doi:10.1007/s12311-019-1008-z
Cocozza S, Costabile T, Pontillo G, et al. Cerebellum and cognition in Friedreich ataxia: a voxel-based morphometry and volumetric MRI study. J Neurol. 2020;267(2):350-358. doi:10.1007/s00415-019-09582-9
Hu J, Chen X, Li M, et al. Pattern of cerebellar grey matter loss associated with ataxia severity in spinocerebellar ataxias type 3: a multi-voxel pattern analysis. Brain Imaging Behav. 2022;16(1):379-388. doi:10.1007/s11682-021-00511-x
Reetz K, Dogan I, Rolfs A, et al. Investigating function and connectivity of morphometric findings-exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). NeuroImage. 2012;62(3):1354-1366. doi:10.1016/j.neuroimage.2012.05.058
Hernandez-Castillo CR, Diaz R, Vaca-Palomares I, et al. Extensive cerebellar and thalamic degeneration in spinocerebellar ataxia type 10. Parkinsonism Relat Disord. 2019;66(August):182-188. doi:10.1016/j.parkreldis.2019.08.011
Jeyakumar M, Smith D, Eliott-Smith E, et al. An inducible mouse model of late onset Tay-Sachs disease. Neurobiol Dis. 2002;10(3):201-210. doi:10.1006/nbdi.2002.0511
Miklyaeva EI, Dong W, Bureau A, et al. Late onset Tay-Sachs disease in mice with targeted disruption of the Hexa gene: behavioral changes and pathology of the central nervous system. Brain Res. 2004;1001(1-2):37-50. doi:10.1016/j.brainres.2003.11.067
Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R. Patterned Purkinje cell degeneration in mouse models of Niemann-pick type C disease. J Comp Neurol. 2003;456(3):279-291. doi:10.1002/cne.10522
Walkley SU, Sikora J, Micsenyi M, Davidson C, Dobrenis K. Lysosomal compromise and brain dysfunction: examining the role of neuroaxonal dystrophy. Biochem Soc Trans. 2010;38(6):1436-1441. doi:10.1042/BST0381436
Lin YC, Hsu CCH, Wang PN, Lin CP, Chang LH. The relationship between Zebrin expression and cerebellar functions: insights from neuroimaging studies. Front Neurol. 2020;11(April):1-12. doi:10.3389/fneur.2020.00315
Walkley SU, Sikora J, Misceney M, Davidson C, Dobrenis K. 乳鼠心肌提取 HHS public access. Physiol Behav. 2018;176(5):139-148. doi:10.4049/jimmunol.1801473.The
Lefter S, O' Mahony O, Sweeney B, Ryan AM. Late-onset Tay-Sachs disease in an Irish family. Mov Disord Clin Pract. 2021;8(1):106-110. doi:10.1002/mdc3.13096
Beh SC, Nations S, Pascual JM, Vernino S. Ataxia and weakness in a young woman. Arch Neurol. 2012;69(7):924-927. doi:10.1001/archneurol.2012.1207
Godeiro C, Felicio AC, Benites V, Chieia MA, Oliveira ASB. Late-onset hexosaminidase a deficiency mimicking primary lateral sclerosis. Arq Neuropsiquiatr. 2009;67(1):105-106. doi:10.1590/S0004-282X2009000100024
Hund E, Grau A, Fogel W, et al. Progressive cerebellar ataxia, proximal neurogenic weakness and ocular motor disturbances: hexosaminidase A deficiency with late clinical onset in four siblings. J Neurol Sci. 1997;145(1):25-31. doi:10.1016/S0022-510X(96)00233-X
Inzelberg R, Korczyn AD. Parkinsonism in adult-onset GM2 gangliosidosis. Mov Disord. 1994;9(3):375-377. doi:10.1002/mds.870090325
Stendel C, Gallenmüller C, Peters K, et al. Paranoid delusion as lead symptom in two siblings with late-onset Tay-Sachs disease and a novel mutation in the HEXA gene. J Neurol. 2015;262(4):1072-1073. doi:10.1007/s00415-015-7729-0
Paw BH, Kaback MM, Neufeld EF. Molecular basis of adult-onset and chronic GM2 gangliosidoses in patients of Ashkenazi Jewish origin: substitution of serine for glycine at position 269 of the alpha-subunit of beta-hexosaminidase. Proc Natl Acad Sci U S A. 1989;86(7):2413-2417. doi:10.1073/pnas.86.7.2413
Fernandesa M, Boulay B, Kaplan F. Chronic variant GM2 gangliosidosis splicing defects MRNA quantitation. 1997 http://www.karger.ch
Riboldi GM, Lau H. Diagnostic tips from a video series and literature review of patients with late-onset tay-sachs disease. Tremor Other Hyperkinet Mov. 2022;12(1):34. doi:10.5334/tohm.726
Foundas AL, Bollich AM, Feldman J, et al. Aberrant auditory processing and atypical planum temporale in developmental stuttering. Neurology. 2004;63(9):1640-1646. doi:10.1212/01.WNL.0000142993.33158.2A
Fox PT, Ingham RJ, Ingham JC, Zamarripa F, Xiong JH, Lancaster JL. Brain correlates of stuttering and syllable production: a PET performance-correlation analysis. Brain. 2000;123(10):1985-2004. doi:10.1093/brain/123.10.1985
Shapiro BE, Natowicz MR. LETTERS psychogenic aphonia: spectacular recovery after motor cortex transcranial magnetic stimulation. J Neurol Neurosurg Psychiatry. 2009;80(1):94-95. doi:10.1136/jnnp.2008.154302
Grim KK, Phillips GD, Renner DR. Dysarthria and stutter as presenting symptoms of late-onset Tay-Sachs disease in three siblings. Mov Disord Clin Pract. 2015;2(3):289-290. doi:10.1002/mdc3.12194
Jahnová H, Poupětová H, Jirečková J, et al. Amyotrophy, cerebellar impairment and psychiatric disease are the main symptoms in a cohort of 14 Czech patients with the late-onset form of Tay-Sachs disease. J Neurol. 2019;266(8):1953-1959. doi:10.1007/s00415-019-09364-3
Starowicz-Filip A, Prochwicz K, Klosowska J, et al. Cerebellar functional lateralization from the perspective of clinical neuropsychology. Front Psychol. 2021;12:775308. doi:10.3389/fpsyg.2021.775308
Jovicich J, Czanner S, Han X, et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage. 2009;46(1):177-192. doi:10.1016/j.neuroimage.2009.02.010.MRI-derived
Stonnington CM, Tan G, Klöppel S, et al. Interpreting scan data acquired from multiple scanners: a study with Alzheimer's disease. NeuroImage. 2008;39(3):1180-1185. doi:10.1016/j.neuroimage.2007.09.066
Wittens MMJ, Allemeersch GJ, Sima DM, et al. Inter- and intra-scanner variability of automated brain volumetry on three magnetic resonance imaging Systems in Alzheimer's disease and controls. Front Aging Neurosci. 2021;13:13. doi:10.3389/fnagi.2021.746982