Intraflagellar transport: A critical player in photoreceptor development and the pathogenesis of retinal degenerative diseases.
cilia
ciliopathy
flagella
intraflagellar transport
outer segment
photoreceptor
retinal degeneration
Journal
Cytoskeleton (Hoboken, N.J.)
ISSN: 1949-3592
Titre abrégé: Cytoskeleton (Hoboken)
Pays: United States
ID NLM: 101523844
Informations de publication
Date de publication:
23 Dec 2023
23 Dec 2023
Historique:
revised:
01
12
2023
received:
04
11
2023
accepted:
08
12
2023
medline:
23
12
2023
pubmed:
23
12
2023
entrez:
23
12
2023
Statut:
aheadofprint
Résumé
In vertebrate vision, photons are detected by highly specialized sensory cilia called outer segments. Photoreceptor outer segments form by remodeling the membrane of a primary cilium into a stack of flattened disks. Intraflagellar transport (IFT) is critical to the formation of most types of eukaryotic cilia including the outer segments. This review covers the state of knowledge of the role of IFT in the formation and maintenance of outer segments and the human diseases that result from mutations in genes encoding the IFT complex and associated motors.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIH HHS
Pays : United States
Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Aggarwal, H. K., Jain, D., Yadav, S., Kaverappa, V., & Gupta, A. (2013). Senior-loken syndrome with rare manifestations: A case report. The Eurasian Journal of Medicine, 45(2), 128-131. https://doi.org/10.5152/eajm.2013.25
Ahmed, N. T., & Mitchell, D. R. (2005). ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. Molecular Biology of the Cell, 16(10), 5004-5012. https://doi.org/10.1091/mbc.e05-07-0627
Aldahmesh, M. A., Li, Y., Alhashem, A., Anazi, S., Alkuraya, H., Hashem, M., Awaji, A. A., Sogaty, S., Alkharashi, A., Alzahrani, S., Al Hazzaa, S. A., Xiong, Y., Kong, S., Sun, Z., & Alkuraya, F. S. (2014). IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet-Biedl syndrome. Human Molecular Genetics, 23(12), 3307-3315. https://doi.org/10.1093/hmg/ddu044
Ávila-Fernández, A., Cantalapiedra, D., Aller, E., Vallespín, E., Aguirre-Lambán, J., Blanco-Kelly, F., Corton, M., Riveiro-Álvarez, R., Allikmets, R., Trujillo-Tiebas, M. J., Millán, J. M., Cremers, F. P., & Ayuso, C. (2010). Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray. Molecular Vision, 16, 2550-2558.
Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C., & Mykytyn, K. (2008). Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 4242-4246. https://doi.org/10.1073/pnas.0711027105
Berson, E. L. (1981). Retinitis pigmentosa and allied diseases: Applications of electroretinographic testing. International Ophthalmology, 4(1-2), 7-22. https://doi.org/10.1007/BF00139576
Berson, E. L. (1993). Retinitis pigmentosa. The Friedenwald lecture. Investigative Ophthalmology & Visual Science, 34(5), 1659-1676.
Berson, E. L., Sandberg, M. A., Rosner, B., Birch, D. G., & Hanson, A. H. (1985). Natural course of retinitis pigmentosa over a three-year interval. American Journal of Ophthalmology, 99(3), 240-251. https://doi.org/10.1016/0002-9394(85)90351-4
Besharse, J. C., & Horst, C. J. (1990). The photoreceptor connecting cilium. A model for the transition zone. In R. A. Bloodgood (Ed.), Ciliary and flagellar membranes (pp. 389-417). Plenum Publishing Corp.
Bhogaraju, S., Cajanek, L., Fort, C., Blisnick, T., Weber, K., Taschner, M., Mizuno, N., Lamla, S., Bastin, P., Nigg, E. A., & Lorentzen, E. (2013). Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science, 341(6149), 1009-1012. https://doi.org/10.1126/science.1240985
Bhowmick, R., Li, M., Sun, J., Baker, S. A., Insinna, C., & Besharse, J. C. (2009). Photoreceptor IFT complexes containing chaperones, guanylyl cyclase 1 and rhodopsin. Traffic, 10(6), 648-663. https://doi.org/10.1111/j.1600-0854.2009.00896.x
Bifari, I. N., Elkhamary, S. M., Bolz, H. J., & Khan, A. O. (2016). The ophthalmic phenotype of IFT140-related ciliopathy ranges from isolated to syndromic congenital retinal dystrophy. The British Journal of Ophthalmology, 100(6), 829-833. https://doi.org/10.1136/bjophthalmol-2015-307555
Biswas, P., Duncan, J. L., Ali, M., Matsui, H., Naeem, M. A., Raghavendra, P. B., Frazer, K. A., Arts, H. H., Riazuddin, S., Akram, J., Hejtmancik, J. F., Riazuddin, S. A., & Ayyagari, R. (2017). A mutation in IFT43 causes non-syndromic recessive retinal degeneration. Human Molecular Genetics, 26(23), 4741-4751. https://doi.org/10.1093/hmg/ddx356
Bizet, A. A., Becker-Heck, A., Ryan, R., Weber, K., Filhol, E., Krug, P., Halbritter, J., Delous, M., Lasbennes, M. C., Linghu, B., Oakeley, E. J., Zarhrate, M., Nitschké, P., Garfa-Traore, M., Serluca, F., Yang, F., Bouwmeester, T., Pinson, L., Cassuto, E., … Saunier, S. (2015). Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nature Communications, 6, 8666. https://doi.org/10.1038/ncomms9666
Blacque, O. E., & Leroux, M. R. (2006). Bardet-Biedl syndrome: An emerging pathomechanism of intracellular transport. Cellular and Molecular Life Sciences, 63(18), 2145-2161. https://doi.org/10.1007/s00018-006-6180-x
Boldt, K., Mans, D. A., Won, J., van Reeuwijk, J., Vogt, A., Kinkl, N., Letteboer, S. J. F., Hicks, W. L., Hurd, R. E., Naggert, J. K., Texier, Y., den Hollander, A. I., Koenekoop, R. K., Bennett, J., Cremers, F. P. M., Gloeckner, C. J., Nishina, P. M., Roepman, R., & Ueffing, M. (2011). Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. The Journal of Clinical Investigation, 121(6), 2169-2180. https://doi.org/10.1172/JCI45627
Boughman, J. A., Vernon, M., & Shaver, K. A. (1983). Usher syndrome: Definition and estimate of prevalence from two high-risk populations. Journal of Chronic Diseases, 36(8), 595-603. https://doi.org/10.1016/0021-9681(83)90147-9
Bujakowska, K. M., Zhang, Q., Siemiatkowska, A. M., Liu, Q., Place, E., Falk, M. J., Consugar, M., Lancelot, M. E., Antonio, A., Lonjou, C., Carpentier, W., Mohand-Saïd, S., den Hollander, A. I., Cremers, F. P. M., Leroy, B. P., Gai, X., Sahel, J. A., van den Born, L. I., Collin, R. W. J., … Pierce, E. A. (2015). Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Human Molecular Genetics, 24(1), 230-242. https://doi.org/10.1093/hmg/ddu441
Bunker, C. H., Berson, E. L., Bromley, W. C., Hayes, R. P., & Roderick, T. H. (1984). Prevalence of retinitis pigmentosa in Maine. American Journal of Ophthalmology, 97(3), 357-365. https://doi.org/10.1016/0002-9394(84)90636-6
Burns, M. E., & Arshavsky, V. Y. (2005). Beyond counting photons: Trials and trends in vertebrate visual transduction. Neuron, 48(3), 387-401. https://doi.org/10.1016/j.neuron.2005.10.014
Calvert, P. D., Strissel, K. J., Schiesser, W. E., Pugh, E. N., Jr., & Arshavsky, V. Y. (2006). Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends in Cell Biology, 16(11), 560-568. https://doi.org/10.1016/j.tcb.2006.09.001
Chiang, A. P., Nishimura, D., Searby, C., Elbedour, K., Carmi, R., Ferguson, A. L., Secrist, J., Braun, T., Casavant, T., Stone, E. M., & Sheffield, V. C. (2004). Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3). American Journal of Human Genetics, 75(3), 475-484. https://doi.org/10.1086/423903
Cideciyan, A. V. (2010). Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Progress in Retinal and Eye Research, 29(5), 398-427. https://doi.org/10.1016/j.preteyeres.2010.04.002
Cole, D. G., Diener, D. R., Himelblau, A. L., Beech, P. L., Fuster, J. C., & Rosenbaum, J. L. (1998). Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. The Journal of Cell Biology, 141(4), 993-1008. https://doi.org/10.1083/jcb.141.4.993
Coussa, R. G., Otto, E. A., Gee, H. Y., Arthurs, P., Ren, H., Lopez, I., Keser, V., Fu, Q., Faingold, R., Khan, A., Schwartzentruber, J., Majewski, J., Hildebrandt, F., & Koenekoop, R. K. (2013). WDR19: An ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome. Clinical Genetics, 84(2), 150-159. https://doi.org/10.1111/cge.12196
Craft, J. M., Harris, J. A., Hyman, S., Kner, P., & Lechtreck, K. F. (2015). Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. The Journal of Cell Biology, 208(2), 223-237. https://doi.org/10.1083/jcb.201409036
Craft Van De Weghe, J., Harris, J. A., Kubo, T., Witman, G. B., & Lechtreck, K. F. (2020). Diffusion rather than intraflagellar transport likely provides most of the tubulin required for axonemal assembly in Chlamydomonas. Journal of Cell Science, 133(17), jcs249805. https://doi.org/10.1242/jcs.249805
Dagoneau, N., Goulet, M., Geneviève, D., Sznajer, Y., Martinovic, J., Smithson, S., Huber, C., Baujat, G., Flori, E., Tecco, L., Cavalcanti, D., Delezoide, A. L., Serre, V., Le Merrer, M., Munnich, A., & Cormier-Daire, V. (2009). DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. American Journal of Human Genetics, 84(5), 706-711. https://doi.org/10.1016/j.ajhg.2009.04.016
DeLuca, A. P., Whitmore, S. S., Barnes, J., Sharma, T. P., Westfall, T. A., Scott, C. A., Weed, M. C., Wiley, J. S., Wiley, L. A., Johnston, R. M., Schnieders, M. J., Lentz, S. R., Tucker, B. A., Mullins, R. F., Scheetz, T. E., Stone, E. M., & Slusarski, D. C. (2016). Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis. Human Molecular Genetics, 25(1), 44-56. https://doi.org/10.1093/hmg/ddv446
den Hollander, A. I., Koenekoop, R. K., Mohamed, M. D., Arts, H. H., Boldt, K., Towns, K. V., Sedmak, T., Beer, M., Nagel-Wolfrum, K., McKibbin, M., Dharmaraj, S., Lopez, I., Ivings, L., Williams, G. A., Springell, K., Woods, C. G., Jafri, H., Rashid, Y., Strom, T. M., … Roepman, R. (2007). Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nature Genetics, 39(7), 889-895. https://doi.org/10.1038/ng2066
Dryja, T. P., McGee, T. L., Reichel, E., Hahn, L. B., Cowley, G. S., Yandell, D. W., Sandberg, M. A., & Berson, E. L. (1990). A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature, 343(6256), 364-366. https://doi.org/10.1038/343364a0
Eckmiller, M. S. (1996). Renewal of the ciliary axoneme in cone outer segments of the retina of Xenopus laevis. Cell and Tissue Research, 285(1), 165-169. https://doi.org/10.1007/s004410050632
Eguether, T., San Agustin, J. T., Keady, B. T., Jonassen, J. A., Liang, Y., Francis, R., Tobita, K., Johnson, C. A., Abdelhamed, Z. A., Lo, C. W., & Pazour, G. J. (2014). IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Developmental Cell, 31(3), 279-290. https://doi.org/10.1016/j.devcel.2014.09.011
Fahim, A. T., Daiger, S. P., & Weleber, R. G. (1993). Nonsyndromic retinitis pigmentosa overview. In M. P. Adam, G. M. Mirzaa, R. A. Pagon, S. E. Wallace, L. J. H. Bean, K. W. Gripp, & A. Amemiya (Eds.), GeneReviews®. University of Washington, Seattle.
Ferrari, S., Di Iorio, E., Barbaro, V., Ponzin, D., Sorrentino, F. S., & Parmeggiani, F. (2011). Retinitis pigmentosa: Genes and disease mechanisms. Current Genomics, 12(4), 238-249. https://doi.org/10.2174/138920211795860107
Fishman, G. A., Anderson, R. J., & Lourenco, P. (1985). Prevalence of posterior subcapsular lens opacities in patients with retinitis pigmentosa. The British Journal of Ophthalmology, 69(4), 263-266. https://doi.org/10.1136/bjo.69.4.263
Fleming, L. R., Doherty, D. A., Parisi, M. A., Glass, I. A., Bryant, J., Fischer, R., Turkbey, B., Choyke, P., Daryanani, K., Vemulapalli, M., Mullikin, J. C., Malicdan, M. C., Vilboux, T., Sayer, J. A., Gahl, W. A., & Gunay-Aygun, M. (2017). Prospective evaluation of kidney disease in Joubert syndrome. Clinical Journal of the American Society of Nephrology, 12(12), 1962-1973. https://doi.org/10.2215/CJN.05660517
Flynn, M. F., Fishman, G. A., Anderson, R. J., & Roberts, D. K. (2001). Retrospective longitudinal study of visual acuity change in patients with retinitis pigmentosa. Retina, 21(6), 639-646. https://doi.org/10.1097/00006982-200112000-00012
Gilliam, J. C., Chang, J. T., Sandoval, I. M., Zhang, Y., Li, T., Pittler, S. J., Chiu, W., & Wensel, T. G. (2012). Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell, 151(5), 1029-1041. https://doi.org/10.1016/j.cell.2012.10.038
Grover, S., Fishman, G. A., Alexander, K. R., Anderson, R. J., & Derlacki, D. J. (1996). Visual acuity impairment in patients with retinitis pigmentosa. Ophthalmology, 103(10), 1593-1600. https://doi.org/10.1016/s0161-6420(96)30458-2
Hagiwara, A., Yamamoto, S., Ogata, K., Sugawara, T., Hiramatsu, A., Shibata, M., & Mitamura, Y. (2011). Macular abnormalities in patients with retinitis pigmentosa: Prevalence on OCT examination and outcomes of vitreoretinal surgery. Acta Ophthalmologica, 89(2), e122-e125. https://doi.org/10.1111/j.1755-3768.2010.01866.x
Halbritter, J., Porath, J. D., Diaz, K. A., Braun, D. A., Kohl, S., Chaki, M., Allen, S. J., Soliman, N. A., Hildebrandt, F., Otto, E. A., & GPN Study Group. (2013). Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Human Genetics, 132(8), 865-884. https://doi.org/10.1007/s00439-013-1297-0
Hamel, C. (2006). Retinitis pigmentosa. Orphanet Journal of Rare Diseases, 1, 40. https://doi.org/10.1186/1750-1172-1-40
Handa, A., Voss, U., Hammarsjo, A., Grigelioniene, G., & Nishimura, G. (2020). Skeletal ciliopathies: A pattern recognition approach. Japanese Journal of Radiology, 38(3), 193-206. https://doi.org/10.1007/s11604-020-00920-w
Hartong, D. T., Berson, E. L., & Dryja, T. P. (2006). Retinitis pigmentosa. Lancet, 368(9549), 1795-1809. https://doi.org/10.1016/S0140-6736(06)69740-7
Hemachandar, R. (2014). Senior-Loken syndrome - A ciliopathy. Journal of Clinical and Diagnostic Research, 8(11), MD04-05. https://doi.org/10.7860/JCDR/2014/9688.5120
Hou, Y., Qin, H., Follit, J. A., Pazour, G. J., Rosenbaum, J. L., & Witman, G. B. (2007). Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. The Journal of Cell Biology, 176(5), 653-665. https://doi.org/10.1083/jcb.200608041
Hull, S., Owen, N., Islam, F., Tracey-White, D., Plagnol, V., Holder, G. E., Michaelides, M., Carss, K., Raymond, F. L., Rozet, J. M., Ramsden, S. C., Black, G. C. M., Perrault, I., Sarkar, A., Moosajee, M., Webster, A. R., Arno, G., & Moore, A. T. (2016). Nonsyndromic retinal dystrophy due to bi-allelic mutations in the ciliary transport gene IFT140. Investigative Ophthalmology & Visual Science, 57(3), 1053-1062. https://doi.org/10.1167/iovs.15-17976
Hunter, E. L., Lechtreck, K., Fu, G., Hwang, J., Lin, H., Gokhale, A., Alford, L. M., Lewis, B., Yamamoto, R., Kamiya, R., Yang, F., Nicastro, D., Dutcher, S. K., Wirschell, M., & Sale, W. S. (2018). The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Molecular Biology of the Cell, 29(8), 886-896. https://doi.org/10.1091/mbc.E17-12-0729
Insinna, C., Baye, L. M., Amsterdam, A., Besharse, J. C., & Link, B. A. (2010). Analysis of a zebrafish dync1h1 mutant reveals multiple functions for cytoplasmic dynein 1 during retinal photoreceptor development. Neural Development, 5, 12. https://doi.org/10.1186/1749-8104-5-12
Insinna, C., & Besharse, J. C. (2008). Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Developmental Dynamics, 237(8), 1982-1992. https://doi.org/10.1002/dvdy.21554
Iomini, C., Li, L., Esparza, J. M., & Dutcher, S. K. (2009). Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii. Genetics, 183(3), 885-896. https://doi.org/10.1534/genetics.109.101915
Jiang, L., Tam, B. M., Ying, G., Wu, S., Hauswirth, W. W., Frederick, J. M., Moritz, O. L., & Baehr, W. (2015). Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function. The FASEB Journal, 29(12), 4866-4880. https://doi.org/10.1096/fj.15-275677
Jonassen, J. A., San Agustin, J., Follit, J. A., & Pazour, G. J. (2008). Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. The Journal of Cell Biology, 183(3), 377-384. https://doi.org/10.1083/jcb.200808137
Jonassen, J. A., SanAgustin, J., Baker, S. P., & Pazour, G. J. (2012). Disruption of IFT complex a causes cystic kidneys without mitotic spindle misorientation. Journal of the American Society of Nephrology, 23(4), 641-651. https://doi.org/10.1681/ASN.2011080829
Keady, B. T., Le, Y. Z., & Pazour, G. J. (2011). IFT20 is required for opsin trafficking and photoreceptor outer segment development. Molecular Biology of the Cell, 22(7), 921-930. https://doi.org/10.1091/mbc.E10-09-0792
Kleinendorst, L., Alsters, S. I. M., Abawi, O., Waisfisz, Q., Boon, E. M. J., van den Akker, E. L. T., & van Haelst, M. M. (2020). Second case of Bardet-Biedl syndrome caused by biallelic variants in IFT74. European Journal of Human Genetics, 28(7), 943-946. https://doi.org/10.1038/s41431-020-0594-z
Kozminski, K. G., Johnson, K. A., Forscher, P., & Rosenbaum, J. L. (1993). A motility in the eukaryotic flagellum unrelated to flagellar beating. Proceedings of the National Academy of Sciences of the United States of America, 90(12), 5519-5523. https://doi.org/10.1073/pnas.90.12.5519
Kubo, T., Brown, J. M., Bellve, K., Craige, B., Craft, J. M., Fogarty, K., Lechtreck, K. F., & Witman, G. B. (2016). Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. Journal of Cell Science, 129(10), 2106-2119. https://doi.org/10.1242/jcs.187120
Kumaran, N., Moore, A. T., Weleber, R. G., & Michaelides, M. (2017). Leber congenital amaurosis/early-onset severe retinal dystrophy: Clinical features, molecular genetics and therapeutic interventions. The British Journal of Ophthalmology, 101(9), 1147-1154. https://doi.org/10.1136/bjophthalmol-2016-309975
Lamb, T. D. (2013). Evolution of phototransduction, vertebrate photoreceptors and retina. Progress in Retinal and Eye Research, 36, 52-119. https://doi.org/10.1016/j.preteyeres.2013.06.001
Lamb, T. D., Collin, S. P., & Pugh, E. N., Jr. (2007). Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup. Nature Reviews Neuroscience, 8(12), 960-976. https://doi.org/10.1038/nrn2283
LaVail, M. M. (1973). Kinetics of rod outer segment renewal in the developing mouse retina. The Journal of Cell Biology, 58(3), 650-661. https://doi.org/10.1083/jcb.58.3.650
Lechtreck, K. F., Johnson, E. C., Sakai, T., Cochran, D., Ballif, B. A., Rush, J., Pazour, G. J., Ikebe, M., & Witman, G. B. (2009). The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. The Journal of Cell Biology, 187(7), 1117-1132. https://doi.org/10.1083/jcb.200909183
Lechtreck, K. F., Liu, Y., Dai, J., Alkhofash, R. A., Butler, J., Alford, L., & Yang, P. (2022). Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. eLife, 11, e74993. https://doi.org/10.7554/eLife.74993
Lewis, T. R., Kundinger, S. R., Link, B. A., Insinna, C., & Besharse, J. C. (2018). Kif17 phosphorylation regulates photoreceptor outer segment turnover. BMC Cell Biology, 19(1), 25. https://doi.org/10.1186/s12860-018-0177-9
Lindstrand, A., Frangakis, S., Carvalho, C. M., Richardson, E. B., McFadden, K. A., Willer, J. R., Pehlivan, D., Liu, P., Pediaditakis, I. L., Sabo, A., Lewis, R. A., Banin, E., Lupski, J. R., Davis, E. E., & Katsanis, N. (2016). Copy-number variation contributes to the mutational load of Bardet-Biedl syndrome. American Journal of Human Genetics, 99(2), 318-336. https://doi.org/10.1016/j.ajhg.2015.04.023
Liu, X., Bulgakov, O. V., Darrow, K. N., Pawlyk, B., Adamian, M., Liberman, M. C., & Li, T. (2007). Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4413-4418. https://doi.org/10.1073/pnas.0610950104
Loken, A. C., Hanssen, O., Halvorsen, S., & Jolster, N. J. (1961). Hereditary renal dysplasia and blindness. Acta Paediatrica, 50, 177-184. https://doi.org/10.1111/j.1651-2227.1961.tb08037.x
Luo, M., Lin, Z., Zhu, T., Jin, M., Meng, D., He, R., Cao, Z., Shen, Y., Lu, C., Cai, R., Zhao, Y., Wang, X., Li, H., Wu, S., Zou, X., Luo, G., Cao, L., Huang, M., Jiao, H., … Cao, M. (2021). Disrupted intraflagellar transport due to IFT74 variants causes Joubert syndrome. Genetics in Medicine, 23(6), 1041-1049. https://doi.org/10.1038/s41436-021-01106-z
Mardy, A. H., Hodoglugil, U., Yip, T., & Slavotinek, A. M. (2021). Third case of Bardet-Biedl syndrome caused by a biallelic variant predicted to affect splicing of IFT74. Clinical Genetics, 100(1), 93-99. https://doi.org/10.1111/cge.13962
Marszalek, J. R., Liu, X., Roberts, E. A., Chui, D., Marth, J. D., Williams, D. S., & Goldstein, L. S. (2000). Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell, 102(2), 175-187. https://doi.org/10.1016/s0092-8674(00)00023-4
Melluso, A., Secondulfo, F., Capolongo, G., Capasso, G., & Zacchia, M. (2023). Bardet-Biedl syndrome: Current perspectives and clinical outlook. Therapeutics and Clinical Risk Management, 19, 115-132. https://doi.org/10.2147/TCRM.S338653
Meyer, J. R., Krentz, A. D., Berg, R. L., Richardson, J. G., Pomeroy, J., Hebbring, S. J., & Haws, R. M. (2022). Kidney failure in Bardet-Biedl syndrome. Clinical Genetics, 101(4), 429-441. https://doi.org/10.1111/cge.14119
Mockel, A., Perdomo, Y., Stutzmann, F., Letsch, J., Marion, V., & Dollfus, H. (2011). Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Progress in Retinal and Eye Research, 30(4), 258-274. https://doi.org/10.1016/j.preteyeres.2011.03.001
Montolio-Marzo, S., Catala-Mora, J., Madrid-Aris, A., Armstrong, J., Diaz-Carcajosa, J., & Carreras, E. (2020). IFT144 and mild retinitis pigmentosa in Mainzer-Saldino syndrome: A new association. European Journal of Medical Genetics, 63(12), 104073. https://doi.org/10.1016/j.ejmg.2020.104073
Mukhopadhyay, S., Wen, X., Chih, B., Nelson, C. D., Lane, W. S., Scales, S. J., & Jackson, P. K. (2010). TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes & Development, 24(19), 2180-2193. https://doi.org/10.1101/gad.1966210
Murcia, N. S., Richards, W. G., Yoder, B. K., Mucenski, M. L., Dunlap, J. R., & Woychik, R. P. (2000). The oak ridge polycystic kidney (orpk) disease gene is required for left-right axis determination. Development, 127(11), 2347-2355.
Nachury, M. V., Loktev, A. V., Zhang, Q., Westlake, C. J., Peränen, J., Merdes, A., Slusarski, D. C., Scheller, R. H., Bazan, J. F., Sheffield, V. C., & Jackson, P. K. (2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 129(6), 1201-1213. https://doi.org/10.1016/j.cell.2007.03.053
Neveling, K., Collin, R. W., Gilissen, C., van Huet, R. A., Visser, L., Kwint, M. P., Gijsen, S. J., Zonneveld, M. N., Wieskamp, N., de Ligt, J., Siemiatkowska, A. M., Hoefsloot, L. H., Buckley, M. F., Kellner, U., Branham, K. E., den Hollander, A., Hoischen, A., Hoyng, C., Klevering, B. J., … Scheffer, H. (2012). Next-generation genetic testing for retinitis pigmentosa. Human Mutation, 33(6), 963-972. https://doi.org/10.1002/humu.22045
Ning, K., Sendayen, B. E., Kowal, T. J., Wang, B., Jones, B. W., Hu, Y., & Sun, Y. (2021). Primary cilia in amacrine cells in retinal development. Investigative Ophthalmology & Visual Science, 62(9), 15. https://doi.org/10.1167/iovs.62.9.15
Obata, S., & Usukura, J. (1992). Morphogenesis of the photoreceptor outer segment during postnatal development in the mouse (BALB/c) retina. Cell and Tissue Research, 269(1), 39-48. https://doi.org/10.1007/BF00384724
Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R., & Scholey, J. M. (2005). Functional coordination of intraflagellar transport motors. Nature, 436(7050), 583-587. https://doi.org/10.1038/nature03818
Pazour, G. J., Baker, S. A., Deane, J. A., Cole, D. G., Dickert, B. L., Rosenbaum, J. L., Witman, G. B., & Besharse, J. C. (2002). The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. The Journal of Cell Biology, 157(1), 103-113. https://doi.org/10.1083/jcb.200107108
Pazour, G. J., Wilkerson, C. G., & Witman, G. B. (1998). A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). The Journal of Cell Biology, 141(4), 979-992.
Pearring, J. N., Salinas, R. Y., Baker, S. A., & Arshavsky, V. Y. (2013). Protein sorting, targeting and trafficking in photoreceptor cells. Progress in Retinal and Eye Research, 36, 24-51. https://doi.org/10.1016/j.preteyeres.2013.03.002
Perrault, I., Saunier, S., Hanein, S., Filhol, E., Bizet, A. A., Collins, F., Salih, M. A. M., Gerber, S., Delphin, N., Bigot, K., Orssaud, C., Silva, E., Baudouin, V., Oud, M. M., Shannon, N., Le Merrer, M., Roche, O., Pietrement, C., Goumid, J., … Rozet, J. M. (2012). Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. American Journal of Human Genetics, 90(5), 864-870. https://doi.org/10.1016/j.ajhg.2012.03.006
Peters, K. R., Palade, G. E., Schneider, B. G., & Papermaster, D. S. (1983). Fine structure of a periciliary ridge complex of frog retinal rod cells revealed by ultrahigh resolution scanning electron microscopy. The Journal of Cell Biology, 96(1), 265-276. https://doi.org/10.1083/jcb.96.1.265
Philp, N. J., Chang, W., & Long, K. (1987). Light-stimulated protein movement in rod photoreceptor cells of the rat retina. FEBS Letters, 225(1-2), 127-132. https://doi.org/10.1016/0014-5793(87)81144-4
Riva, A., Gambadauro, A., Dipasquale, V., Casto, C., Ceravolo, M. D., Accogli, A., Scala, M., Ceravolo, G., Iacomino, M., Zara, F., Striano, P., Cuppari, C., di Rosa, G., Cutrupi, M. C., Salpietro, V., & Chimenz, R. (2021). Biallelic variants in KIF17 associated with microphthalmia and coloboma spectrum. International Journal of Molecular Sciences, 22(9), 4471. https://doi.org/10.3390/ijms22094471
Rodríguez-Muñoz, A., Aller, E., Jaijo, T., González-García, E., Cabrera-Peset, A., Gallego-Pinazo, R., Udaondo, P., Salom, D., García-García, G., & Millán, J. M. (2020). Expanding the clinical and molecular heterogeneity of nonsyndromic inherited retinal dystrophies. The Journal of Molecular Diagnostics, 22(4), 532-543. https://doi.org/10.1016/j.jmoldx.2020.01.003
Salinas, R. Y., Pearring, J. N., Ding, J. D., Spencer, W. J., Hao, Y., & Arshavsky, V. Y. (2017). Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. The Journal of Cell Biology, 216(5), 1489-1499. https://doi.org/10.1083/jcb.201608081
Satran, D., Pierpont, M. E., & Dobyns, W. B. (1999). Cerebello-oculo-renal syndromes including Arima, Senior-Loken and COACH syndromes: More than just variants of Joubert syndrome. American Journal of Medical Genetics, 86(5), 459-469.
Schaefer, E., Delvallée, C., Mary, L., Stoetzel, C., Geoffroy, V., Marks-Delesalle, C., Holder-Espinasse, M., Ghoumid, J., Dollfus, H., & Muller, J. (2019). Identification and characterization of known biallelic mutations in the IFT27 (BBS19) gene in a novel family with Bardet-Biedl syndrome. Frontiers in Genetics, 10, 21. https://doi.org/10.3389/fgene.2019.00021
Schaefer, E., Stoetzel, C., Scheidecker, S., Geoffroy, V., Prasad, M. K., Redin, C., Missotte, I., Lacombe, D., Mandel, J. L., Muller, J., & Dollfus, H. (2016). Identification of a novel mutation confirms the implication of IFT172 (BBS20) in Bardet-Biedl syndrome. Journal of Human Genetics, 61(5), 447-450. https://doi.org/10.1038/jhg.2015.162
Schmidts, M., Arts, H. H., Bongers, E. M., Yap, Z., Oud, M. M., Antony, D., Duijkers, L., Emes, R. D., Stalker, J., Yntema, J. B., Plagnol, V., Hoischen, A., Gilissen, C., Forsythe, E., Lausch, E., Veltman, J. A., Roeleveld, N., Superti-Furga, A., Kutkowska-Kazmierczak, A., … Mitchison, H. M. (2013). Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. Journal of Medical Genetics, 50(5), 309-323. https://doi.org/10.1136/jmedgenet-2012-101284
Schmidts, M., Frank, V., Eisenberger, T., Al Turki, S., Bizet, A. A., Antony, D., Rix, S., Decker, C., Bachmann, N., Bald, M., Vinke, T., Toenshoff, B., di Donato, N., Neuhann, T., Hartley, J. L., Maher, E. R., Bogdanović, R., Peco-Antić, A., Mache, C., … Bergmann, C. (2013). Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Human Mutation, 34(5), 714-724. https://doi.org/10.1002/humu.22294
Schneider, S., de Cegli, R., Nagarajan, J., Kretschmer, V., Matthiessen, P. A., Intartaglia, D., Hotaling, N., Ueffing, M., Boldt, K., Conte, I., & May-Simera, H. L. (2021). Loss of ciliary gene Bbs8 results in physiological defects in the retinal pigment epithelium. Frontiers in Cell and Development Biology, 9, 607121. https://doi.org/10.3389/fcell.2021.607121
Senior, B., Friedmann, A. I., & Braudo, J. L. (1961). Juvenile familial nephropathy with tapetoretinal degeneration. A new oculorenal dystrophy. American Journal of Ophthalmology, 52, 625-633. https://doi.org/10.1016/0002-9394(61)90147-7
Senum, S. R., Li, Y. S. M., Benson, K. A., Joli, G., Olinger, E., Lavu, S., Madsen, C. D., Gregory, A. V., Neatu, R., Kline, T. L., Audrézet, M. P., Outeda, P., Nau, C. B., Meijer, E., Ali, H., Steinman, T. I., Mrug, M., Phelan, P. J., Watnick, T. J., … Harris, P. C. (2022). Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. American Journal of Human Genetics, 109(1), 136-156. https://doi.org/10.1016/j.ajhg.2021.11.016
Skiba, N. P., Lewis, T. R., Spencer, W. J., Castillo, C. M., Shevchenko, A., & Arshavsky, V. Y. (2023). Absolute quantification of photoreceptor outer segment proteins. Journal of Proteome Research, 22(8), 2703-2713. https://doi.org/10.1021/acs.jproteome.3c00267
Soens, Z. T., Li, Y., Zhao, L., Eblimit, A., Dharmat, R., Li, Y., Chen, Y., Naqeeb, M., Fajardo, N., Lopez, I., Sun, Z., Koenekoop, R. K., & Chen, R. (2016). Hypomorphic mutations identified in the candidate Leber congenital amaurosis gene CLUAP1. Genetics in Medicine, 18(10), 1044-1051. https://doi.org/10.1038/gim.2015.205
Sokolov, M., Lyubarsky, A. L., Strissel, K. J., Savchenko, A. B., Govardovskii, V. I., Pugh, E. N., Jr., & Arshavsky, V. Y. (2002). Massive light-driven translocation of transducin between the two major compartments of rod cells: A novel mechanism of light adaptation. Neuron, 34(1), 95-106. https://doi.org/10.1016/s0896-6273(02)00636-0
Spahiu, L., Behluli, E., Grajcevci-Uka, V., Liehr, T., & Temaj, G. (2022). Joubert syndrome: Molecular basis and treatment. Journal of Mother and Child, 26(1), 118-123. https://doi.org/10.34763/jmotherandchild.20222601.d-22-00034
Spencer, W. J., & Arshavsky, V. Y. (2023). A ciliary branched Actin network drives photoreceptor disc morphogenesis. Advances in Experimental Medicine and Biology, 1415, 507-511. https://doi.org/10.1007/978-3-031-27681-1_74
Spencer, W. J., Lewis, T. R., Phan, S., Cady, M. A., Serebrovskaya, E. O., Schneider, N. F., Kim, K. Y., Cameron, L. A., Skiba, N. P., Ellisman, M. H., & Arshavsky, V. Y. (2019). Photoreceptor disc membranes are formed through an Arp2/3-dependent lamellipodium-like mechanism. Proceedings of the National Academy of Sciences of the United States of America, 116, 27043-27052. https://doi.org/10.1073/pnas.1913518117
Spencer, W. J., Schneider, N. F., Lewis, T. R., Castillo, C. M., Skiba, N. P., & Arshavsky, V. Y. (2023). The WAVE complex drives the morphogenesis of the photoreceptor outer segment cilium. Proceedings of the National Academy of Sciences of the United States of America, 120(12), e2215011120. https://doi.org/10.1073/pnas.2215011120
Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U., & Sung, C. H. (1999). Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell, 97(7), 877-887. https://doi.org/10.1016/s0092-8674(00)80800-4
Tarabeux, J., Champagne, N., Brustein, E., Hamdan, F. F., Gauthier, J., Lapointe, M., Maios, C., Piton, A., Spiegelman, D., Henrion, E., Synapse to Disease Team, Millet, B., Rapoport, J. L., Delisi, L. E., Joober, R., Fathalli, F., Fombonne, E., Mottron, L., Forget-Dubois, N., … Rouleau, G. A. (2010). De novo truncating mutation in kinesin 17 associated with schizophrenia. Biological Psychiatry, 68(7), 649-656. https://doi.org/10.1016/j.biopsych.2010.04.018
Tran, P. V., Haycraft, C. J., Besschetnova, T. Y., Turbe-Doan, A., Stottmann, R. W., Herron, B. J., Chesebro, A. L., Qiu, H., Scherz, P. J., Shah, J. V., Yoder, B. K., & Beier, D. R. (2008). THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nature Genetics, 40(4), 403-410. https://doi.org/10.1038/ng.105
Tsujikawa, M., Wada, Y., Sukegawa, M., Sawa, M., Gomi, F., Nishida, K., & Tano, Y. (2008). Age at onset curves of retinitis pigmentosa. Archives of Ophthalmology, 126(3), 337-340. https://doi.org/10.1001/archopht.126.3.337
Wang, S. F., Kowal, T. J., Ning, K., Koo, E. B., Wu, A. Y., Mahajan, V. B., & Sun, Y. (2018). Review of ocular manifestations of Joubert syndrome. Genes (Basel), 9(12), 605. https://doi.org/10.3390/genes9120605
Wang, X., Sha, Y. W., Wang, W. T., Cui, Y. Q., Chen, J., Yan, W., Hou, X. T., Mei, L. B., Yu, C. C., & Wang, J. (2019). Novel IFT140 variants cause spermatogenic dysfunction in humans. Molecular Genetics & Genomic Medicine, 7(9), e920. https://doi.org/10.1002/mgg3.920
Williams, C. L., McIntyre, J. C., Norris, S. R., Jenkins, P. M., Zhang, L., Pei, Q., Verhey, K., & Martens, J. R. (2014). Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nature Communications, 5, 5813. https://doi.org/10.1038/ncomms6813
Williams, D. S. (2002). Transport to the photoreceptor outer segment by myosin VIIa and kinesin II. Vision Research, 42(4), 455-462. https://doi.org/10.1016/s0042-6989(01)00228-0
Xu, M., Yang, L., Wang, F., Li, H., Wang, X., Wang, W., Ge, Z., Wang, K., Zhao, L., Li, H., Li, Y., Sui, R., & Chen, R. (2015). Mutations in human IFT140 cause non-syndromic retinal degeneration. Human Genetics, 134(10), 1069-1078. https://doi.org/10.1007/s00439-015-1586-x
Yin, X., Takei, Y., Kido, M. A., & Hirokawa, N. (2011). Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels. Neuron, 70(2), 310-325. https://doi.org/10.1016/j.neuron.2011.02.049
Young, R. W. (1967). The renewal of photoreceptor cell outer segments. The Journal of Cell Biology, 33(1), 61-72. https://doi.org/10.1083/jcb.33.1.61
Zhongling, K., Guoming, L., Yanhui, C., & Xiaoru, C. (2021). Case report: Second report of Joubert syndrome caused by biallelic variants in IFT74. Frontiers in Genetics, 12, 738157. https://doi.org/10.3389/fgene.2021.738157