Interface-acting nucleotide controls polymerization dynamics at microtubule plus- and minus-ends.
biochemistry
cell biology
chemical biology
kinetic simulations
microtubule dynamics
mixed nucleotide
none
Journal
eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
medline:
8
1
2024
pubmed:
5
1
2024
entrez:
5
1
2024
Statut:
epublish
Résumé
GTP-tubulin is preferentially incorporated at growing microtubule ends, but the biochemical mechanism by which the bound nucleotide regulates the strength of tubulin:tubulin interactions is debated. The 'self-acting' (cis) model posits that the nucleotide (GTP or GDP) bound to a particular tubulin dictates how strongly that tubulin interacts, whereas the 'interface-acting' (trans) model posits that the nucleotide at the interface of two tubulin dimers is the determinant. We identified a testable difference between these mechanisms using mixed nucleotide simulations of microtubule elongation: with a self-acting nucleotide, plus- and minus-end growth rates decreased in the same proportion to the amount of GDP-tubulin, whereas with interface-acting nucleotide, plus-end growth rates decreased disproportionately. We then experimentally measured plus- and minus-end elongation rates in mixed nucleotides and observed a disproportionate effect of GDP-tubulin on plus-end growth rates. Simulations of microtubule growth were consistent with GDP-tubulin binding at and 'poisoning' plus-ends but not at minus-ends. Quantitative agreement between simulations and experiments required nucleotide exchange at terminal plus-end subunits to mitigate the poisoning effect of GDP-tubulin there. Our results indicate that the interfacial nucleotide determines tubulin:tubulin interaction strength, thereby settling a longstanding debate over the effect of nucleotide state on microtubule dynamics.
Identifiants
pubmed: 38180336
doi: 10.7554/eLife.89231
pii: 89231
doi:
pii:
Substances chimiques
Tubulin
0
Nucleotides
0
Guanosine Triphosphate
86-01-1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIGMS NIH HHS
ID : R01-GM135565
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35-GM139568
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32-GM108563
Pays : United States
Informations de copyright
© 2023, Rice et al.
Déclaration de conflit d'intérêts
LR, LM, JC, WH No competing interests declared
Références
Nat Rev Mol Cell Biol. 2022 Aug;23(8):541-558
pubmed: 35383336
Curr Biol. 2012 Sep 25;22(18):R802-3
pubmed: 23017994
Proc Natl Acad Sci U S A. 2022 Jan 11;119(2):
pubmed: 34996871
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7314-7322
pubmed: 30804205
Nature. 2005 May 26;435(7041):523-7
pubmed: 15917813
Biochemistry. 1995 Jan 31;34(4):1332-43
pubmed: 7827081
Cell. 2014 May 22;157(5):1117-29
pubmed: 24855948
Sci Adv. 2023 Jan 4;9(1):eabq5404
pubmed: 36598991
J Cell Biol. 2021 Oct 4;220(10):
pubmed: 34324632
Cell Biochem Biophys. 1999;31(2):175-83
pubmed: 10593258
Nat Struct Mol Biol. 2018 Jul;25(7):607-615
pubmed: 29967541
Elife. 2014 Aug 05;3:e03069
pubmed: 25097237
Cell Syst. 2020 Dec 16;11(6):608-624.e9
pubmed: 33086051
Mol Biol Cell. 2012 Feb;23(4):642-56
pubmed: 22190741
Mol Biol Cell. 2016 Nov 7;27(22):3515-3525
pubmed: 27146111
Biochemistry. 1986 Dec 16;25(25):8292-300
pubmed: 3814585
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29
pubmed: 26153368
Biochemistry. 1994 Feb 1;33(4):885-93
pubmed: 8305436
Biochemistry. 2000 Oct 10;39(40):12295-302
pubmed: 11015208
J Biol Chem. 1984 Feb 10;259(3):1968-73
pubmed: 6693440
Proc Natl Acad Sci U S A. 1985 Feb;82(4):1131-5
pubmed: 3856250
Biochemistry. 1986 Nov 4;25(22):7054-62
pubmed: 3026443
Curr Opin Cell Biol. 2019 Feb;56:88-93
pubmed: 30415187
Mol Biol Cell. 2019 Jun 1;30(12):1451-1462
pubmed: 30943103
Structure. 2005 Feb;13(2):183-95
pubmed: 15698563
Mol Biol Cell. 2022 Mar 1;33(3):ar22
pubmed: 35108073
Nat Rev Mol Cell Biol. 2017 Mar;18(3):187-201
pubmed: 28174430
Science. 1993 Aug 20;261(5124):1044-7
pubmed: 8102497
J Struct Biol. 1997 Mar;118(2):107-18
pubmed: 9126637
Nat Cell Biol. 2013 Jun;15(6):688-93
pubmed: 23666085
Science. 2012 Aug 17;337(6096):857-60
pubmed: 22904013
Curr Biol. 2013 Jul 22;23(14):1342-8
pubmed: 23831290
Nat Rev Mol Cell Biol. 2009 Aug;10(8):569-74
pubmed: 19513082
J Mol Biol. 2011 Sep 9;412(1):35-42
pubmed: 21787788
Nat Rev Mol Cell Biol. 2018 Jul;19(7):451-463
pubmed: 29674711
Nature. 1984 Nov 15-21;312(5991):237-42
pubmed: 6504138
Science. 2016 Feb 19;351(6275):871-5
pubmed: 26822609
Cold Spring Harb Perspect Biol. 2017 May 1;9(5):
pubmed: 28461574
Biophys J. 2005 May;88(5):3167-79
pubmed: 15722432
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21173-8
pubmed: 19948965
Mol Biol Cell. 1996 Apr;7(4):663-75
pubmed: 8730106
Biophys J. 2015 Dec 15;109(12):2574-2591
pubmed: 26682815
Cell. 2012 Apr 13;149(2):371-82
pubmed: 22500803
Biochemistry. 1989 Nov 14;28(23):9143-52
pubmed: 2605248
Mol Biol Cell. 2015 Apr 1;26(7):1207-10
pubmed: 25823928
Mol Biol Cell. 1992 Oct;3(10):1155-67
pubmed: 1421572
J Cell Biol. 2019 Sep 2;218(9):2841-2853
pubmed: 31420452
Bioessays. 2013 May;35(5):452-61
pubmed: 23532586
Biochemistry. 2006 May 16;45(19):5933-8
pubmed: 16681364
J Cell Sci. 2018 Oct 31;132(4):
pubmed: 30262468
Bioessays. 2023 Jan;45(1):e2200081
pubmed: 36398561
Curr Biol. 2012 Sep 25;22(18):1681-7
pubmed: 22902755
Cell. 2015 Aug 13;162(4):849-59
pubmed: 26234155
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5378-83
pubmed: 18388201
Nat Rev Mol Cell Biol. 2021 Dec;22(12):777-795
pubmed: 34408299
Arch Biochem Biophys. 1991 Dec;291(2):356-62
pubmed: 1952949
Mol Biol Cell. 2016 Nov 7;27(22):3563-3573
pubmed: 27489342
J Mol Biol. 1998 Jul 17;280(3):365-73
pubmed: 9665843
Biochemistry. 1979 Sep 4;18(18):3880-6
pubmed: 486401
J Biol Chem. 2010 Jun 4;285(23):17507-13
pubmed: 20371874
Biochem Pharmacol. 1973 Dec 1;22(23):3099-108
pubmed: 4202581
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12011-6
pubmed: 22778434
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6035-40
pubmed: 11983898
Annu Rev Biophys Biomol Struct. 2006;35:93-114
pubmed: 16689629
J Biol Chem. 1987 Dec 25;262(36):17278-84
pubmed: 2826416
Elife. 2022 Apr 14;11:
pubmed: 35420545
Biophys J. 2005 Nov;89(5):2911-26
pubmed: 15951387
J Cell Biol. 1988 Oct;107(4):1437-48
pubmed: 3170635
Biochemistry. 2000 Aug 22;39(33):10269-74
pubmed: 10956016
Proc Natl Acad Sci U S A. 1983 Dec;80(24):7520-3
pubmed: 6584870
Nature. 2005 Jun 16;435(7044):911-5
pubmed: 15959508
Biochemistry. 1978 May 16;17(10):1908-15
pubmed: 656371
Biochemistry. 1987 Sep 22;26(19):6091-9
pubmed: 2825770
Biochemistry. 1985 Mar 26;24(7):1708-14
pubmed: 4005223
Curr Biol. 1994 Dec 1;4(12):1053-61
pubmed: 7704569
Elife. 2020 Feb 13;9:
pubmed: 32053491
Biophys J. 2011 Jun 8;100(11):2820-8
pubmed: 21641328
FEBS Lett. 2003 Nov 27;555(1):126-33
pubmed: 14630332
Curr Biol. 2021 May 24;31(10):R560-R573
pubmed: 34033790
J Cell Biol. 2023 Jul 3;222(7):
pubmed: 37184584