Interface-acting nucleotide controls polymerization dynamics at microtubule plus- and minus-ends.

biochemistry cell biology chemical biology kinetic simulations microtubule dynamics mixed nucleotide none

Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
05 Jan 2024
Historique:
medline: 8 1 2024
pubmed: 5 1 2024
entrez: 5 1 2024
Statut: epublish

Résumé

GTP-tubulin is preferentially incorporated at growing microtubule ends, but the biochemical mechanism by which the bound nucleotide regulates the strength of tubulin:tubulin interactions is debated. The 'self-acting' (cis) model posits that the nucleotide (GTP or GDP) bound to a particular tubulin dictates how strongly that tubulin interacts, whereas the 'interface-acting' (trans) model posits that the nucleotide at the interface of two tubulin dimers is the determinant. We identified a testable difference between these mechanisms using mixed nucleotide simulations of microtubule elongation: with a self-acting nucleotide, plus- and minus-end growth rates decreased in the same proportion to the amount of GDP-tubulin, whereas with interface-acting nucleotide, plus-end growth rates decreased disproportionately. We then experimentally measured plus- and minus-end elongation rates in mixed nucleotides and observed a disproportionate effect of GDP-tubulin on plus-end growth rates. Simulations of microtubule growth were consistent with GDP-tubulin binding at and 'poisoning' plus-ends but not at minus-ends. Quantitative agreement between simulations and experiments required nucleotide exchange at terminal plus-end subunits to mitigate the poisoning effect of GDP-tubulin there. Our results indicate that the interfacial nucleotide determines tubulin:tubulin interaction strength, thereby settling a longstanding debate over the effect of nucleotide state on microtubule dynamics.

Identifiants

pubmed: 38180336
doi: 10.7554/eLife.89231
pii: 89231
doi:
pii:

Substances chimiques

Tubulin 0
Nucleotides 0
Guanosine Triphosphate 86-01-1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIGMS NIH HHS
ID : R01-GM135565
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35-GM139568
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32-GM108563
Pays : United States

Informations de copyright

© 2023, Rice et al.

Déclaration de conflit d'intérêts

LR, LM, JC, WH No competing interests declared

Références

Nat Rev Mol Cell Biol. 2022 Aug;23(8):541-558
pubmed: 35383336
Curr Biol. 2012 Sep 25;22(18):R802-3
pubmed: 23017994
Proc Natl Acad Sci U S A. 2022 Jan 11;119(2):
pubmed: 34996871
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7314-7322
pubmed: 30804205
Nature. 2005 May 26;435(7041):523-7
pubmed: 15917813
Biochemistry. 1995 Jan 31;34(4):1332-43
pubmed: 7827081
Cell. 2014 May 22;157(5):1117-29
pubmed: 24855948
Sci Adv. 2023 Jan 4;9(1):eabq5404
pubmed: 36598991
J Cell Biol. 2021 Oct 4;220(10):
pubmed: 34324632
Cell Biochem Biophys. 1999;31(2):175-83
pubmed: 10593258
Nat Struct Mol Biol. 2018 Jul;25(7):607-615
pubmed: 29967541
Elife. 2014 Aug 05;3:e03069
pubmed: 25097237
Cell Syst. 2020 Dec 16;11(6):608-624.e9
pubmed: 33086051
Mol Biol Cell. 2012 Feb;23(4):642-56
pubmed: 22190741
Mol Biol Cell. 2016 Nov 7;27(22):3515-3525
pubmed: 27146111
Biochemistry. 1986 Dec 16;25(25):8292-300
pubmed: 3814585
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29
pubmed: 26153368
Biochemistry. 1994 Feb 1;33(4):885-93
pubmed: 8305436
Biochemistry. 2000 Oct 10;39(40):12295-302
pubmed: 11015208
J Biol Chem. 1984 Feb 10;259(3):1968-73
pubmed: 6693440
Proc Natl Acad Sci U S A. 1985 Feb;82(4):1131-5
pubmed: 3856250
Biochemistry. 1986 Nov 4;25(22):7054-62
pubmed: 3026443
Curr Opin Cell Biol. 2019 Feb;56:88-93
pubmed: 30415187
Mol Biol Cell. 2019 Jun 1;30(12):1451-1462
pubmed: 30943103
Structure. 2005 Feb;13(2):183-95
pubmed: 15698563
Mol Biol Cell. 2022 Mar 1;33(3):ar22
pubmed: 35108073
Nat Rev Mol Cell Biol. 2017 Mar;18(3):187-201
pubmed: 28174430
Science. 1993 Aug 20;261(5124):1044-7
pubmed: 8102497
J Struct Biol. 1997 Mar;118(2):107-18
pubmed: 9126637
Nat Cell Biol. 2013 Jun;15(6):688-93
pubmed: 23666085
Science. 2012 Aug 17;337(6096):857-60
pubmed: 22904013
Curr Biol. 2013 Jul 22;23(14):1342-8
pubmed: 23831290
Nat Rev Mol Cell Biol. 2009 Aug;10(8):569-74
pubmed: 19513082
J Mol Biol. 2011 Sep 9;412(1):35-42
pubmed: 21787788
Nat Rev Mol Cell Biol. 2018 Jul;19(7):451-463
pubmed: 29674711
Nature. 1984 Nov 15-21;312(5991):237-42
pubmed: 6504138
Science. 2016 Feb 19;351(6275):871-5
pubmed: 26822609
Cold Spring Harb Perspect Biol. 2017 May 1;9(5):
pubmed: 28461574
Biophys J. 2005 May;88(5):3167-79
pubmed: 15722432
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21173-8
pubmed: 19948965
Mol Biol Cell. 1996 Apr;7(4):663-75
pubmed: 8730106
Biophys J. 2015 Dec 15;109(12):2574-2591
pubmed: 26682815
Cell. 2012 Apr 13;149(2):371-82
pubmed: 22500803
Biochemistry. 1989 Nov 14;28(23):9143-52
pubmed: 2605248
Mol Biol Cell. 2015 Apr 1;26(7):1207-10
pubmed: 25823928
Mol Biol Cell. 1992 Oct;3(10):1155-67
pubmed: 1421572
J Cell Biol. 2019 Sep 2;218(9):2841-2853
pubmed: 31420452
Bioessays. 2013 May;35(5):452-61
pubmed: 23532586
Biochemistry. 2006 May 16;45(19):5933-8
pubmed: 16681364
J Cell Sci. 2018 Oct 31;132(4):
pubmed: 30262468
Bioessays. 2023 Jan;45(1):e2200081
pubmed: 36398561
Curr Biol. 2012 Sep 25;22(18):1681-7
pubmed: 22902755
Cell. 2015 Aug 13;162(4):849-59
pubmed: 26234155
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5378-83
pubmed: 18388201
Nat Rev Mol Cell Biol. 2021 Dec;22(12):777-795
pubmed: 34408299
Arch Biochem Biophys. 1991 Dec;291(2):356-62
pubmed: 1952949
Mol Biol Cell. 2016 Nov 7;27(22):3563-3573
pubmed: 27489342
J Mol Biol. 1998 Jul 17;280(3):365-73
pubmed: 9665843
Biochemistry. 1979 Sep 4;18(18):3880-6
pubmed: 486401
J Biol Chem. 2010 Jun 4;285(23):17507-13
pubmed: 20371874
Biochem Pharmacol. 1973 Dec 1;22(23):3099-108
pubmed: 4202581
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12011-6
pubmed: 22778434
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6035-40
pubmed: 11983898
Annu Rev Biophys Biomol Struct. 2006;35:93-114
pubmed: 16689629
J Biol Chem. 1987 Dec 25;262(36):17278-84
pubmed: 2826416
Elife. 2022 Apr 14;11:
pubmed: 35420545
Biophys J. 2005 Nov;89(5):2911-26
pubmed: 15951387
J Cell Biol. 1988 Oct;107(4):1437-48
pubmed: 3170635
Biochemistry. 2000 Aug 22;39(33):10269-74
pubmed: 10956016
Proc Natl Acad Sci U S A. 1983 Dec;80(24):7520-3
pubmed: 6584870
Nature. 2005 Jun 16;435(7044):911-5
pubmed: 15959508
Biochemistry. 1978 May 16;17(10):1908-15
pubmed: 656371
Biochemistry. 1987 Sep 22;26(19):6091-9
pubmed: 2825770
Biochemistry. 1985 Mar 26;24(7):1708-14
pubmed: 4005223
Curr Biol. 1994 Dec 1;4(12):1053-61
pubmed: 7704569
Elife. 2020 Feb 13;9:
pubmed: 32053491
Biophys J. 2011 Jun 8;100(11):2820-8
pubmed: 21641328
FEBS Lett. 2003 Nov 27;555(1):126-33
pubmed: 14630332
Curr Biol. 2021 May 24;31(10):R560-R573
pubmed: 34033790
J Cell Biol. 2023 Jul 3;222(7):
pubmed: 37184584

Auteurs

Lauren A McCormick (LA)

Department of Biophysics and Biochemistry, the University of Texas Southwestern Medical Center, Dallas, United States.

Joseph M Cleary (JM)

Department of Biomedical Engineering, Pennsylvania State University, State College, United States.

William O Hancock (WO)

Department of Biomedical Engineering, Pennsylvania State University, State College, United States.

Luke M Rice (LM)

Department of Biophysics and Biochemistry, the University of Texas Southwestern Medical Center, Dallas, United States.

Articles similaires

Regulation of minimal spindle midzone organization by mitotic kinases.

Wei Ming Lim, Wei-Xiang Chew, Arianna Esposito Verza et al.
1.00
Spindle Apparatus Phosphorylation Humans CDC2 Protein Kinase Protein Serine-Threonine Kinases

Polymerization kinetics of 3D-printed orthodontic aligners under different UV post-curing conditions.

Thomas Manoukakis, Alexandros K Nikolaidis, Elisabeth A Koulaouzidou
1.00
Printing, Three-Dimensional Polymerization Ultraviolet Rays Kinetics Humans

Effect of curcumin on physico-mechanical properties of heat polymerized denture base resin.

Aashmika Mahajan, Naveen Gopi Chander, Muthukumar Balasubramanian
1.00
Curcumin Denture Bases Materials Testing Surface Properties Hot Temperature

Classifications MeSH