Distinct mesenchymal cell states mediate prostate cancer progression.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 Jan 2024
Historique:
received: 13 03 2023
accepted: 04 12 2023
medline: 9 1 2024
pubmed: 9 1 2024
entrez: 8 1 2024
Statut: epublish

Résumé

In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.

Identifiants

pubmed: 38191471
doi: 10.1038/s41467-023-44210-1
pii: 10.1038/s41467-023-44210-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

363

Informations de copyright

© 2024. The Author(s).

Références

Rebello, R. J. et al. Prostate cancer. Nat. Rev. Dis. Prim. 7, 9 (2021).
pubmed: 33542230 doi: 10.1038/s41572-020-00243-0
Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).
pubmed: 26000489 pmcid: 4484602 doi: 10.1016/j.cell.2015.05.001
Shoag, J. & Barbieri, C. E. Clinical variability and molecular heterogeneity in prostate cancer. Asian J. Androl. 18, 543–548 (2016).
pubmed: 27080479 pmcid: 4955177 doi: 10.4103/1008-682X.178852
Pederzoli, F. et al. Targetable gene fusions and aberrations in genitourinary oncology. Nat. Rev. Urol. 17, 613–625 (2020).
pubmed: 33046892 doi: 10.1038/s41585-020-00379-4
Dakhova, O., Rowley, D. & Ittmann, M. Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo. Clin. Cancer Res. 20, 100–109 (2014).
pubmed: 24150235 doi: 10.1158/1078-0432.CCR-13-1184
Valencia, T. et al. Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26, 121–135 (2014).
pubmed: 25002027 pmcid: 4101061 doi: 10.1016/j.ccr.2014.05.004
Linares, J. F. et al. ATF4-induced metabolic reprograming is a synthetic vulnerability of the p62-deficient tumor stroma. Cell Metab. 26, 817–829.e816 (2017).
pubmed: 28988820 pmcid: 5718961 doi: 10.1016/j.cmet.2017.09.001
Tyekucheva, S. et al. Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nat. Commun. 8, 420 (2017).
pubmed: 28871082 pmcid: 5583238 doi: 10.1038/s41467-017-00460-4
Mo, F. et al. Stromal gene expression is predictive for metastatic primary prostate cancer. Eur. Urol. 73, 524–532 (2018).
pubmed: 28330676 doi: 10.1016/j.eururo.2017.02.038
Pederzoli, F. et al. Stromal cells in prostate cancer pathobiology: friends or foes?. Br. J. Cancer. 128, 930–939 (2022).
Baena, E. et al. ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev. 27, 683–698 (2013).
pubmed: 23512661 pmcid: 3613614 doi: 10.1101/gad.211011.112
Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).
pubmed: 19741607 pmcid: 2800362 doi: 10.1038/nature08361
Lesche, R. et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32, 148–149 (2002).
pubmed: 11857804 doi: 10.1002/gene.10036
Floc’h, N. et al. Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model. Cancer Res. 72, 4483–4493 (2012).
pubmed: 22815528 pmcid: 3432676 doi: 10.1158/0008-5472.CAN-12-0283
Zou, M. et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 7, 736–749 (2017).
pubmed: 28411207 pmcid: 5501744 doi: 10.1158/2159-8290.CD-16-1174
Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).
pubmed: 14522256 doi: 10.1016/S1535-6108(03)00197-1
Berger, A. et al. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J. Clin. Invest 129, 3924–3940 (2019).
pubmed: 31260412 pmcid: 6715370 doi: 10.1172/JCI127961
Brady, N. J. et al. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer. Nat. Commun. 12, 3372 (2021).
pubmed: 34099734 pmcid: 8185096 doi: 10.1038/s41467-021-23780-y
Iwafuchi-Doi, M. & Zaret, K. S. Cell fate control by pioneer transcription factors. Development 143, 1833–1837 (2016).
pubmed: 27246709 pmcid: 6514407 doi: 10.1242/dev.133900
Almalki, S. G. & Agrawal, D. K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92, 41–51 (2016).
pubmed: 27012163 pmcid: 5010472 doi: 10.1016/j.diff.2016.02.005
Van de Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 15, 2247–2276 (2020).
pubmed: 32561888 doi: 10.1038/s41596-020-0336-2
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
pubmed: 26653891 pmcid: 4676162 doi: 10.1186/s13059-015-0844-5
Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–d503 (2020).
pubmed: 31691815
Karthaus, W. R. et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 368, 497–505 (2020).
pubmed: 32355025 pmcid: 7313621 doi: 10.1126/science.aay0267
Kwon, O. J. et al. Functional heterogeneity of mouse prostate stromal cells revealed by single-cell RNA-Seq. iScience 13, 328–338 (2019).
pubmed: 30878879 pmcid: 6423355 doi: 10.1016/j.isci.2019.02.032
Crowley, L. et al. A single-cell atlas of the mouse and human prostate reveals heterogeneity and conservation of epithelial progenitors. Elife 9, e59465 (2020).
Jiao, H., Walczak, B. E., Lee, M. S., Lemieux, M. E. & Li, W. J. GATA6 regulates aging of human mesenchymal stem/stromal cells. Stem Cells 39, 62–77 (2021).
pubmed: 33252174 doi: 10.1002/stem.3297
Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).
pubmed: 19129762 pmcid: 2744041 doi: 10.1038/nature07619
Kim, W. et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc. Natl Acad. Sci. USA 111, 16389–16394 (2014).
pubmed: 25313057 pmcid: 4246299 doi: 10.1073/pnas.1407097111
Suzuki, N. et al. Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc. Natl Acad. Sci. USA 103, 2202–2207 (2006).
pubmed: 16461905 pmcid: 1413708 doi: 10.1073/pnas.0508928103
He, J. et al. Lhx6 regulates canonical Wnt signaling to control the fate of mesenchymal progenitor cells during mouse molar root patterning. PLoS Genet 17, e1009320 (2021).
pubmed: 33596195 pmcid: 7920342 doi: 10.1371/journal.pgen.1009320
Pioli, P. D., Whiteside, S. K., Weis, J. J. & Weis, J. H. Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs. Immunobiology 221, 618–633 (2016).
pubmed: 26831822 pmcid: 4801692 doi: 10.1016/j.imbio.2016.01.007
Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).
pubmed: 28059767 pmcid: 5367887 doi: 10.1126/science.aah4199
Liu, J. et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416.e411 (2018).
pubmed: 29625055 pmcid: 6066282 doi: 10.1016/j.cell.2018.02.052
Cancer Genome Atlas Research Network. The Molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532 pmcid: 5802054 doi: 10.1186/s13059-017-1382-0
Cunha, G. R., Hayward, S. W., Wang, Y. Z. & Ricke, W. A. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J. Cancer 107, 1–10 (2003).
pubmed: 12925950 doi: 10.1002/ijc.11335
Dakhova, O. et al. Global gene expression analysis of reactive stroma in prostate cancer. Clin. Cancer Res. 15, 3979–3989 (2009).
pubmed: 19509179 pmcid: 2734921 doi: 10.1158/1078-0432.CCR-08-1899
Tuxhorn, J. A., Ayala, G. E. & Rowley, D. R. Reactive stroma in prostate cancer progression. J. Urol. 166, 2472–2483 (2001).
pubmed: 11696814 doi: 10.1016/S0022-5347(05)65620-0
Salmon, H., Remark, R., Gnjatic, S. & Merad, M. Host tissue determinants of tumour immunity. Nat. Rev. Cancer 19, 215–227 (2019).
pubmed: 30867580 pmcid: 7787168
de Bono, J. S. et al. Prostate carcinogenesis: inflammatory storms. Nat. Rev. Cancer 20, 455–469 (2020).
pubmed: 32546840 doi: 10.1038/s41568-020-0267-9
Netti, G. S. et al. Role of complement in regulating inflammation processes in renal and prostate cancers. Cells 10, 2426 (2021).
Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).
pubmed: 16439202 doi: 10.1016/j.cell.2006.01.007
Zhou, Z. et al. Androgen-regulated stromal complement component 7 (C7) suppresses prostate cancer growth. Oncogene 42, 2428–2438 (2023).
pubmed: 37400528 doi: 10.1038/s41388-023-02759-7
Manning, M. L., Williams, S. A., Jelinek, C. A., Kostova, M. B. & Denmeade, S. R. Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma. J. Immunol. 190, 2567–2574 (2013).
pubmed: 23401592 doi: 10.4049/jimmunol.1200856
Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A. & Lambris, J. D. Complement in cancer: untangling an intricate relationship. Nat. Rev. Immunol. 18, 5–18 (2018).
pubmed: 28920587 doi: 10.1038/nri.2017.97
Stultz, J. & Fong, L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 24, 697–717 (2021).
pubmed: 33820953 pmcid: 8384622 doi: 10.1038/s41391-021-00340-5
Venturini, N. J. & Drake, C. G. Immunotherapy for prostate cancer. Cold Spring Harb. Perspect. Med. 9, a030627 (2019).
Ma, C. et al. The prostate stromal transcriptome in aggressive and lethal prostate cancer. Mol. Cancer Res. 21, 253–260 (2022).
Sreenath, T. L., Dobi, A., Petrovics, G. & Srivastava, S. Oncogenic activation of ERG: a predominant mechanism in prostate cancer. J. Carcinog. 10, 37 (2011).
pubmed: 22279422 pmcid: 3263025 doi: 10.4103/1477-3163.91122
Gasi Tandefelt, D., Boormans, J., Hermans, K. & Trapman, J. ETS fusion genes in prostate cancer. Endocr. Relat. Cancer 21, R143–R152 (2014).
pubmed: 24659477 doi: 10.1530/ERC-13-0390
Rostad, K. et al. ERG upregulation and related ETS transcription factors in prostate cancer. Int J. Oncol. 30, 19–32 (2007).
pubmed: 17143509
Jaratlerdsiri, W. et al. African-specific molecular taxonomy of prostate cancer. Nature 609, 552–559 (2022).
pubmed: 36045292 pmcid: 9477733 doi: 10.1038/s41586-022-05154-6
Cunha, G. R. et al. Normal and abnormal development of the male urogenital tract. Role of androgens, mesenchymal-epithelial interactions, and growth factors. J. Androl. 13, 465–475 (1992).
pubmed: 1293128 doi: 10.1002/j.1939-4640.1992.tb00338.x
Leach, D. A. et al. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome. Oncotarget 6, 16135–16150 (2015).
pubmed: 25965833 pmcid: 4599261 doi: 10.18632/oncotarget.3873
Cioni, B. et al. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol. Oncol. 12, 1308–1323 (2018).
pubmed: 29808619 pmcid: 6068356 doi: 10.1002/1878-0261.12327
Liu, Y. et al. Stromal AR inhibits prostate tumor progression by restraining secretory luminal epithelial cells. Cell Rep. 39, 110848 (2022).
pubmed: 35613593 pmcid: 9175887 doi: 10.1016/j.celrep.2022.110848
Nuzzo, P. V. et al. Prognostic value of stromal and epithelial periostin expression in human prostate cancer: correlation with clinical pathological features and the risk of biochemical relapse or death. BMC Cancer 12, 625 (2012).
pubmed: 23273263 pmcid: 3553030 doi: 10.1186/1471-2407-12-625
Sasaki, H. et al. Expression of Periostin, homologous with an insect cell adhesion molecule, as a prognostic marker in non-small cell lung cancers. Jpn J. Cancer Res. 92, 869–873 (2001).
pubmed: 11509119 pmcid: 5926835 doi: 10.1111/j.1349-7006.2001.tb01174.x
Tian, Y. et al. Overexpression of periostin in stroma positively associated with aggressive prostate cancer. PLoS One 10, e0121502 (2015).
pubmed: 25781169 pmcid: 4362940 doi: 10.1371/journal.pone.0121502
Logothetis, C. J. & Lin, S.-H. Osteoblasts in prostate cancer metastasis to bone. Nat. Rev. Cancer 5, 21–28 (2005).
pubmed: 15630412 doi: 10.1038/nrc1528
Chu, K. et al. Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol. Cancer Res. 6, 1259–1267 (2008).
pubmed: 18708358 pmcid: 2643879 doi: 10.1158/1541-7786.MCR-08-0077
Huang, C.-F. et al. Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res. 70, 4580–4589 (2010).
pubmed: 20484040 pmcid: 2923552 doi: 10.1158/0008-5472.CAN-09-3016
Agostinis, C. et al. An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development. J. Immunol. 185, 4420–4429 (2010).
pubmed: 20810993 doi: 10.4049/jimmunol.0903215
Bossi, F. et al. C1q as a unique player in angiogenesis with therapeutic implication in wound healing. Proc. Natl Acad. Sci. USA 111, 4209–4214 (2014).
pubmed: 24591625 pmcid: 3964125 doi: 10.1073/pnas.1311968111
Kfoury, Y. et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell 39, 1464–1478.e1468 (2021).
pubmed: 34719426 pmcid: 8578470 doi: 10.1016/j.ccell.2021.09.005
Cuzick, J. et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 12, 245–255 (2011).
pubmed: 21310658 pmcid: 3091030 doi: 10.1016/S1470-2045(10)70295-3
Dardenne, E. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563–577 (2016).
pubmed: 27728805 pmcid: 5540451 doi: 10.1016/j.ccell.2016.09.005
Althoff, K. et al. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 34, 3357–3368 (2015).
pubmed: 25174395 doi: 10.1038/onc.2014.269
Cai, P. Y. et al. A multidisciplinary approach to optimize primary prostate cancer biobanking. Urol. Oncol. 40, 271.e271–271.e277 (2022).
doi: 10.1016/j.urolonc.2022.03.015
Park, K. et al. Performance characteristics of a targeted sequencing platform for simultaneous detection of single nucleotide variants, insertions/deletions, copy number alterations, and gene fusions in cancer genome. Arch. Pathol. Lab Med. 144, 1535–1546 (2020).
pubmed: 32045275 doi: 10.5858/arpa.2019-0162-OA
Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).
pubmed: 26797458 pmcid: 4793718 doi: 10.1038/nprot.2016.006
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601 pmcid: 5241818 doi: 10.1038/ncomms14049
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).
pubmed: 31217225 pmcid: 6582955 doi: 10.15252/msb.20188746
Kingma, D. P. & Welling, M. Auto-encoding variational bayes. CoRR abs/1312.6114, 1–14 (2014).
Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).
pubmed: 30504886 pmcid: 6289068 doi: 10.1038/s41592-018-0229-2
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. CoRR abs/1912.01703, 1–12 (2019).
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
pubmed: 30914743 pmcid: 6435756 doi: 10.1038/s41598-019-41695-z
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008, P10008 (2008).
doi: 10.1088/1742-5468/2008/10/P10008
Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).
pubmed: 30890159 pmcid: 6425583 doi: 10.1186/s13059-019-1663-x
McInnes, L., Healy, J. & Melville, J. Umap: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).
Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med 24, 1277–1289 (2018).
pubmed: 29988129 doi: 10.1038/s41591-018-0096-5
Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 21–36.e13 (2020).
pubmed: 31935371 doi: 10.1016/j.ccell.2019.12.001
Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).
pubmed: 32561858 pmcid: 7608385 doi: 10.1038/s41422-020-0355-0
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892 pmcid: 5937676 doi: 10.1038/nmeth.4463
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522 pmcid: 7889871 doi: 10.1038/s41467-021-21246-9
Jain, S. et al. Validation of a Metastatic Assay using biopsies to improve risk stratification in patients with prostate cancer treated with radical radiation therapy. Ann. Oncol. 29, 215–222 (2018).
pubmed: 29045551 doi: 10.1093/annonc/mdx637
Ragnum, H. B. et al. The tumour hypoxia marker pimonidazole reflects a transcriptional programme associated with aggressive prostate cancer. Br. J. Cancer 112, 382–390 (2015).
pubmed: 25461803 doi: 10.1038/bjc.2014.604
Ross, A. E. et al. A genomic classifier predicting metastatic disease progression in men with biochemical recurrence after prostatectomy. Prostate Cancer Prostatic Dis. 17, 64–69 (2014).
pubmed: 24145624 doi: 10.1038/pcan.2013.49
Erho, N. et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 8, e66855 (2013).
pubmed: 23826159 pmcid: 3691249 doi: 10.1371/journal.pone.0066855
Ramnarine, V. R. et al. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. Gigascience 7, giy050 (2018).
Zhao, S. G. et al. High-throughput transcriptomic analysis nominates proteasomal genes as age-specific biomarkers and therapeutic targets in prostate cancer. Prostate Cancer Prostatic Dis. 18, 229–236 (2015).
pubmed: 25986914 pmcid: 4579590 doi: 10.1038/pcan.2015.22
Boormans, J. L. et al. Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer. Int J. Cancer 133, 335–345 (2013).
pubmed: 23319146 doi: 10.1002/ijc.28025
Ross-Adams, H. et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine 2, 1133–1144 (2015).
pubmed: 26501111 pmcid: 4588396 doi: 10.1016/j.ebiom.2015.07.017
Ross, A. E. et al. Tissue-based genomics augments post-prostatectomy risk stratification in a natural history cohort of intermediate- and high-risk men. Eur. Urol. 69, 157–165 (2016).
pubmed: 26058959 doi: 10.1016/j.eururo.2015.05.042
Pakula, H. et al. Distinct mesenchymal cell states mediate prostate cancer progression. Zenodo https://doi.org/10.5281/zenodo.10069628 (2023).
Tan, A. C., Naiman, D. Q., Xu, L., Winslow, R. L. & Geman, D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21, 3896–3904 (2005).
pubmed: 16105897 doi: 10.1093/bioinformatics/bti631
Geman, D., d’Avignon, C., Naiman, D. Q. & Winslow, R. L. Classifying gene expression profiles from pairwise mRNA comparisons. Stat. Appl. Genet. Mol. Biol. 3, Article19 (2004).
pubmed: 16646797 doi: 10.2202/1544-6115.1071
Omar, M. et al. Using biological constraints to improve prediction in precision oncology. iScience 26, 106108 (2023).
Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).
doi: 10.1080/01621459.1958.10501452
Cox, D. R. Regression Models and Life-Tables. J. R. Stat. Soc.: Ser. B (Methodol.) 34, 187–202 (1972).
Stopsack, K. H. et al. Multiplex immunofluorescence in formalin-fixed paraffin-embedded tumor tissue to identify single-cell-level PI3K pathway activation. Clin. Cancer Res. 26, 5903–5913 (2020).
pubmed: 32913135 pmcid: 7669556 doi: 10.1158/1078-0432.CCR-20-2000
Sadeghipour, A. & Babaheidarian, P. Making formalin-fixed, paraffin embedded blocks. Methods Mol. Biol. 1897, 253–268 (2019).
pubmed: 30539450 doi: 10.1007/978-1-4939-8935-5_22
Milligan, M. Trichrome stain for formalin-fixed tissue. Am. J. Clin. Pathol. 10, 184 (1946).
pubmed: 20273801 doi: 10.1093/ajcp/16.11_ts.184
Leonard, A. K. et al. Methods for the visualization and analysis of extracellular matrix protein structure and degradation. Methods Cell Biol. 143, 79–95 (2018).
pubmed: 29310793 pmcid: 6317720 doi: 10.1016/bs.mcb.2017.08.005
Rodig, S. J. Preparing paraffin tissue sections for staining. Cold Spring Harb. Protoc. 2021 https://doi.org/10.1101/pdb.prot099663 (2021).
Cacciatore, S. et al. Metabolic profiling in formalin-fixed and paraffin-embedded prostate cancer tissues. Mol. Cancer Res. 15, 439–447 (2017).
pubmed: 28074002 pmcid: 5552883 doi: 10.1158/1541-7786.MCR-16-0262
Patel, S. S. et al. The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4-positive T cells that are PD-1-negative. Blood 134, 2059–2069 (2019).
pubmed: 31697809 pmcid: 7218752
Patel, S. S. & Rodig, S. J. Overview of tissue imaging methods. Methods Mol. Biol. 2055, 455–465 (2020).
pubmed: 31502165 doi: 10.1007/978-1-4939-9773-2_21
Carey, C. D. et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood 130, 2420–2430 (2017).
pubmed: 28893733 pmcid: 5766840 doi: 10.1182/blood-2017-03-770719
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
pmcid: 5715110 doi: 10.1038/s41598-017-17204-5
Parra, E. R. et al. Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci. Rep. 7, 13380 (2017).
pubmed: 29042640 pmcid: 5645415 doi: 10.1038/s41598-017-13942-8
Rosenthal, J. et al. Building tools for machine learning and artificial intelligence in cancer research: best practices and a case study with the PathML Toolkit for computational pathology. Mol. Cancer Res. 20, 202–206 (2022).
pubmed: 34880124 doi: 10.1158/1541-7786.MCR-21-0665
Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).
pubmed: 25201529 pmcid: 4772677 doi: 10.1016/j.cell.2014.08.017
Zhao, S. G. et al. The landscape of prognostic outlier genes in high-risk prostate cancer. Clin. Cancer Res. 22, 1777–1786 (2016).
pubmed: 26631616 doi: 10.1158/1078-0432.CCR-15-1250
Pakula, H. et al. metadata_mouse.csv. Zenodo (2023).

Auteurs

Hubert Pakula (H)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Mohamed Omar (M)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.

Ryan Carelli (R)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Filippo Pederzoli (F)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Giuseppe Nicolò Fanelli (GN)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy.

Tania Pannellini (T)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Fabio Socciarelli (F)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Lucie Van Emmenis (L)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Silvia Rodrigues (S)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Caroline Fidalgo-Ribeiro (C)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Pier Vitale Nuzzo (PV)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Nicholas J Brady (NJ)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Wikum Dinalankara (W)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Madhavi Jere (M)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Itzel Valencia (I)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Christopher Saladino (C)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Jason Stone (J)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Caitlin Unkenholz (C)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Richard Garner (R)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Mohammad K Alexanderani (MK)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Francesca Khani (F)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Francisca Nunes de Almeida (FN)

Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.

Cory Abate-Shen (C)

Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.

Matthew B Greenblatt (MB)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

David S Rickman (DS)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Christopher E Barbieri (CE)

Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.
Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA.

Brian D Robinson (BD)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.
Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA.

Luigi Marchionni (L)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.

Massimo Loda (M)

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA. mloda@med.cornell.edu.
Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA. mloda@med.cornell.edu.
Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA. mloda@med.cornell.edu.
University of Oxford, Nuffield Department of Surgical Sciences, Oxford, UK. mloda@med.cornell.edu.

Classifications MeSH