Distinct mesenchymal cell states mediate prostate cancer progression.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 Jan 2024
08 Jan 2024
Historique:
received:
13
03
2023
accepted:
04
12
2023
medline:
9
1
2024
pubmed:
9
1
2024
entrez:
8
1
2024
Statut:
epublish
Résumé
In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.
Identifiants
pubmed: 38191471
doi: 10.1038/s41467-023-44210-1
pii: 10.1038/s41467-023-44210-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
363Informations de copyright
© 2024. The Author(s).
Références
Rebello, R. J. et al. Prostate cancer. Nat. Rev. Dis. Prim. 7, 9 (2021).
pubmed: 33542230
doi: 10.1038/s41572-020-00243-0
Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).
pubmed: 26000489
pmcid: 4484602
doi: 10.1016/j.cell.2015.05.001
Shoag, J. & Barbieri, C. E. Clinical variability and molecular heterogeneity in prostate cancer. Asian J. Androl. 18, 543–548 (2016).
pubmed: 27080479
pmcid: 4955177
doi: 10.4103/1008-682X.178852
Pederzoli, F. et al. Targetable gene fusions and aberrations in genitourinary oncology. Nat. Rev. Urol. 17, 613–625 (2020).
pubmed: 33046892
doi: 10.1038/s41585-020-00379-4
Dakhova, O., Rowley, D. & Ittmann, M. Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo. Clin. Cancer Res. 20, 100–109 (2014).
pubmed: 24150235
doi: 10.1158/1078-0432.CCR-13-1184
Valencia, T. et al. Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26, 121–135 (2014).
pubmed: 25002027
pmcid: 4101061
doi: 10.1016/j.ccr.2014.05.004
Linares, J. F. et al. ATF4-induced metabolic reprograming is a synthetic vulnerability of the p62-deficient tumor stroma. Cell Metab. 26, 817–829.e816 (2017).
pubmed: 28988820
pmcid: 5718961
doi: 10.1016/j.cmet.2017.09.001
Tyekucheva, S. et al. Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nat. Commun. 8, 420 (2017).
pubmed: 28871082
pmcid: 5583238
doi: 10.1038/s41467-017-00460-4
Mo, F. et al. Stromal gene expression is predictive for metastatic primary prostate cancer. Eur. Urol. 73, 524–532 (2018).
pubmed: 28330676
doi: 10.1016/j.eururo.2017.02.038
Pederzoli, F. et al. Stromal cells in prostate cancer pathobiology: friends or foes?. Br. J. Cancer. 128, 930–939 (2022).
Baena, E. et al. ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev. 27, 683–698 (2013).
pubmed: 23512661
pmcid: 3613614
doi: 10.1101/gad.211011.112
Wang, X. et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500 (2009).
pubmed: 19741607
pmcid: 2800362
doi: 10.1038/nature08361
Lesche, R. et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32, 148–149 (2002).
pubmed: 11857804
doi: 10.1002/gene.10036
Floc’h, N. et al. Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model. Cancer Res. 72, 4483–4493 (2012).
pubmed: 22815528
pmcid: 3432676
doi: 10.1158/0008-5472.CAN-12-0283
Zou, M. et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 7, 736–749 (2017).
pubmed: 28411207
pmcid: 5501744
doi: 10.1158/2159-8290.CD-16-1174
Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).
pubmed: 14522256
doi: 10.1016/S1535-6108(03)00197-1
Berger, A. et al. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J. Clin. Invest 129, 3924–3940 (2019).
pubmed: 31260412
pmcid: 6715370
doi: 10.1172/JCI127961
Brady, N. J. et al. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer. Nat. Commun. 12, 3372 (2021).
pubmed: 34099734
pmcid: 8185096
doi: 10.1038/s41467-021-23780-y
Iwafuchi-Doi, M. & Zaret, K. S. Cell fate control by pioneer transcription factors. Development 143, 1833–1837 (2016).
pubmed: 27246709
pmcid: 6514407
doi: 10.1242/dev.133900
Almalki, S. G. & Agrawal, D. K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92, 41–51 (2016).
pubmed: 27012163
pmcid: 5010472
doi: 10.1016/j.diff.2016.02.005
Van de Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 15, 2247–2276 (2020).
pubmed: 32561888
doi: 10.1038/s41596-020-0336-2
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
pubmed: 26653891
pmcid: 4676162
doi: 10.1186/s13059-015-0844-5
Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–d503 (2020).
pubmed: 31691815
Karthaus, W. R. et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 368, 497–505 (2020).
pubmed: 32355025
pmcid: 7313621
doi: 10.1126/science.aay0267
Kwon, O. J. et al. Functional heterogeneity of mouse prostate stromal cells revealed by single-cell RNA-Seq. iScience 13, 328–338 (2019).
pubmed: 30878879
pmcid: 6423355
doi: 10.1016/j.isci.2019.02.032
Crowley, L. et al. A single-cell atlas of the mouse and human prostate reveals heterogeneity and conservation of epithelial progenitors. Elife 9, e59465 (2020).
Jiao, H., Walczak, B. E., Lee, M. S., Lemieux, M. E. & Li, W. J. GATA6 regulates aging of human mesenchymal stem/stromal cells. Stem Cells 39, 62–77 (2021).
pubmed: 33252174
doi: 10.1002/stem.3297
Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).
pubmed: 19129762
pmcid: 2744041
doi: 10.1038/nature07619
Kim, W. et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc. Natl Acad. Sci. USA 111, 16389–16394 (2014).
pubmed: 25313057
pmcid: 4246299
doi: 10.1073/pnas.1407097111
Suzuki, N. et al. Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc. Natl Acad. Sci. USA 103, 2202–2207 (2006).
pubmed: 16461905
pmcid: 1413708
doi: 10.1073/pnas.0508928103
He, J. et al. Lhx6 regulates canonical Wnt signaling to control the fate of mesenchymal progenitor cells during mouse molar root patterning. PLoS Genet 17, e1009320 (2021).
pubmed: 33596195
pmcid: 7920342
doi: 10.1371/journal.pgen.1009320
Pioli, P. D., Whiteside, S. K., Weis, J. J. & Weis, J. H. Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs. Immunobiology 221, 618–633 (2016).
pubmed: 26831822
pmcid: 4801692
doi: 10.1016/j.imbio.2016.01.007
Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).
pubmed: 28059767
pmcid: 5367887
doi: 10.1126/science.aah4199
Liu, J. et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416.e411 (2018).
pubmed: 29625055
pmcid: 6066282
doi: 10.1016/j.cell.2018.02.052
Cancer Genome Atlas Research Network. The Molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532
pmcid: 5802054
doi: 10.1186/s13059-017-1382-0
Cunha, G. R., Hayward, S. W., Wang, Y. Z. & Ricke, W. A. Role of the stromal microenvironment in carcinogenesis of the prostate. Int J. Cancer 107, 1–10 (2003).
pubmed: 12925950
doi: 10.1002/ijc.11335
Dakhova, O. et al. Global gene expression analysis of reactive stroma in prostate cancer. Clin. Cancer Res. 15, 3979–3989 (2009).
pubmed: 19509179
pmcid: 2734921
doi: 10.1158/1078-0432.CCR-08-1899
Tuxhorn, J. A., Ayala, G. E. & Rowley, D. R. Reactive stroma in prostate cancer progression. J. Urol. 166, 2472–2483 (2001).
pubmed: 11696814
doi: 10.1016/S0022-5347(05)65620-0
Salmon, H., Remark, R., Gnjatic, S. & Merad, M. Host tissue determinants of tumour immunity. Nat. Rev. Cancer 19, 215–227 (2019).
pubmed: 30867580
pmcid: 7787168
de Bono, J. S. et al. Prostate carcinogenesis: inflammatory storms. Nat. Rev. Cancer 20, 455–469 (2020).
pubmed: 32546840
doi: 10.1038/s41568-020-0267-9
Netti, G. S. et al. Role of complement in regulating inflammation processes in renal and prostate cancers. Cells 10, 2426 (2021).
Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).
pubmed: 16439202
doi: 10.1016/j.cell.2006.01.007
Zhou, Z. et al. Androgen-regulated stromal complement component 7 (C7) suppresses prostate cancer growth. Oncogene 42, 2428–2438 (2023).
pubmed: 37400528
doi: 10.1038/s41388-023-02759-7
Manning, M. L., Williams, S. A., Jelinek, C. A., Kostova, M. B. & Denmeade, S. R. Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma. J. Immunol. 190, 2567–2574 (2013).
pubmed: 23401592
doi: 10.4049/jimmunol.1200856
Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A. & Lambris, J. D. Complement in cancer: untangling an intricate relationship. Nat. Rev. Immunol. 18, 5–18 (2018).
pubmed: 28920587
doi: 10.1038/nri.2017.97
Stultz, J. & Fong, L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 24, 697–717 (2021).
pubmed: 33820953
pmcid: 8384622
doi: 10.1038/s41391-021-00340-5
Venturini, N. J. & Drake, C. G. Immunotherapy for prostate cancer. Cold Spring Harb. Perspect. Med. 9, a030627 (2019).
Ma, C. et al. The prostate stromal transcriptome in aggressive and lethal prostate cancer. Mol. Cancer Res. 21, 253–260 (2022).
Sreenath, T. L., Dobi, A., Petrovics, G. & Srivastava, S. Oncogenic activation of ERG: a predominant mechanism in prostate cancer. J. Carcinog. 10, 37 (2011).
pubmed: 22279422
pmcid: 3263025
doi: 10.4103/1477-3163.91122
Gasi Tandefelt, D., Boormans, J., Hermans, K. & Trapman, J. ETS fusion genes in prostate cancer. Endocr. Relat. Cancer 21, R143–R152 (2014).
pubmed: 24659477
doi: 10.1530/ERC-13-0390
Rostad, K. et al. ERG upregulation and related ETS transcription factors in prostate cancer. Int J. Oncol. 30, 19–32 (2007).
pubmed: 17143509
Jaratlerdsiri, W. et al. African-specific molecular taxonomy of prostate cancer. Nature 609, 552–559 (2022).
pubmed: 36045292
pmcid: 9477733
doi: 10.1038/s41586-022-05154-6
Cunha, G. R. et al. Normal and abnormal development of the male urogenital tract. Role of androgens, mesenchymal-epithelial interactions, and growth factors. J. Androl. 13, 465–475 (1992).
pubmed: 1293128
doi: 10.1002/j.1939-4640.1992.tb00338.x
Leach, D. A. et al. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome. Oncotarget 6, 16135–16150 (2015).
pubmed: 25965833
pmcid: 4599261
doi: 10.18632/oncotarget.3873
Cioni, B. et al. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol. Oncol. 12, 1308–1323 (2018).
pubmed: 29808619
pmcid: 6068356
doi: 10.1002/1878-0261.12327
Liu, Y. et al. Stromal AR inhibits prostate tumor progression by restraining secretory luminal epithelial cells. Cell Rep. 39, 110848 (2022).
pubmed: 35613593
pmcid: 9175887
doi: 10.1016/j.celrep.2022.110848
Nuzzo, P. V. et al. Prognostic value of stromal and epithelial periostin expression in human prostate cancer: correlation with clinical pathological features and the risk of biochemical relapse or death. BMC Cancer 12, 625 (2012).
pubmed: 23273263
pmcid: 3553030
doi: 10.1186/1471-2407-12-625
Sasaki, H. et al. Expression of Periostin, homologous with an insect cell adhesion molecule, as a prognostic marker in non-small cell lung cancers. Jpn J. Cancer Res. 92, 869–873 (2001).
pubmed: 11509119
pmcid: 5926835
doi: 10.1111/j.1349-7006.2001.tb01174.x
Tian, Y. et al. Overexpression of periostin in stroma positively associated with aggressive prostate cancer. PLoS One 10, e0121502 (2015).
pubmed: 25781169
pmcid: 4362940
doi: 10.1371/journal.pone.0121502
Logothetis, C. J. & Lin, S.-H. Osteoblasts in prostate cancer metastasis to bone. Nat. Rev. Cancer 5, 21–28 (2005).
pubmed: 15630412
doi: 10.1038/nrc1528
Chu, K. et al. Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol. Cancer Res. 6, 1259–1267 (2008).
pubmed: 18708358
pmcid: 2643879
doi: 10.1158/1541-7786.MCR-08-0077
Huang, C.-F. et al. Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res. 70, 4580–4589 (2010).
pubmed: 20484040
pmcid: 2923552
doi: 10.1158/0008-5472.CAN-09-3016
Agostinis, C. et al. An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development. J. Immunol. 185, 4420–4429 (2010).
pubmed: 20810993
doi: 10.4049/jimmunol.0903215
Bossi, F. et al. C1q as a unique player in angiogenesis with therapeutic implication in wound healing. Proc. Natl Acad. Sci. USA 111, 4209–4214 (2014).
pubmed: 24591625
pmcid: 3964125
doi: 10.1073/pnas.1311968111
Kfoury, Y. et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell 39, 1464–1478.e1468 (2021).
pubmed: 34719426
pmcid: 8578470
doi: 10.1016/j.ccell.2021.09.005
Cuzick, J. et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 12, 245–255 (2011).
pubmed: 21310658
pmcid: 3091030
doi: 10.1016/S1470-2045(10)70295-3
Dardenne, E. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563–577 (2016).
pubmed: 27728805
pmcid: 5540451
doi: 10.1016/j.ccell.2016.09.005
Althoff, K. et al. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 34, 3357–3368 (2015).
pubmed: 25174395
doi: 10.1038/onc.2014.269
Cai, P. Y. et al. A multidisciplinary approach to optimize primary prostate cancer biobanking. Urol. Oncol. 40, 271.e271–271.e277 (2022).
doi: 10.1016/j.urolonc.2022.03.015
Park, K. et al. Performance characteristics of a targeted sequencing platform for simultaneous detection of single nucleotide variants, insertions/deletions, copy number alterations, and gene fusions in cancer genome. Arch. Pathol. Lab Med. 144, 1535–1546 (2020).
pubmed: 32045275
doi: 10.5858/arpa.2019-0162-OA
Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).
pubmed: 26797458
pmcid: 4793718
doi: 10.1038/nprot.2016.006
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601
pmcid: 5241818
doi: 10.1038/ncomms14049
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).
pubmed: 31217225
pmcid: 6582955
doi: 10.15252/msb.20188746
Kingma, D. P. & Welling, M. Auto-encoding variational bayes. CoRR abs/1312.6114, 1–14 (2014).
Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).
pubmed: 30504886
pmcid: 6289068
doi: 10.1038/s41592-018-0229-2
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. CoRR abs/1912.01703, 1–12 (2019).
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
pubmed: 30914743
pmcid: 6435756
doi: 10.1038/s41598-019-41695-z
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008, P10008 (2008).
doi: 10.1088/1742-5468/2008/10/P10008
Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).
pubmed: 30890159
pmcid: 6425583
doi: 10.1186/s13059-019-1663-x
McInnes, L., Healy, J. & Melville, J. Umap: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).
Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med 24, 1277–1289 (2018).
pubmed: 29988129
doi: 10.1038/s41591-018-0096-5
Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 21–36.e13 (2020).
pubmed: 31935371
doi: 10.1016/j.ccell.2019.12.001
Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).
pubmed: 32561858
pmcid: 7608385
doi: 10.1038/s41422-020-0355-0
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
pubmed: 28991892
pmcid: 5937676
doi: 10.1038/nmeth.4463
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522
pmcid: 7889871
doi: 10.1038/s41467-021-21246-9
Jain, S. et al. Validation of a Metastatic Assay using biopsies to improve risk stratification in patients with prostate cancer treated with radical radiation therapy. Ann. Oncol. 29, 215–222 (2018).
pubmed: 29045551
doi: 10.1093/annonc/mdx637
Ragnum, H. B. et al. The tumour hypoxia marker pimonidazole reflects a transcriptional programme associated with aggressive prostate cancer. Br. J. Cancer 112, 382–390 (2015).
pubmed: 25461803
doi: 10.1038/bjc.2014.604
Ross, A. E. et al. A genomic classifier predicting metastatic disease progression in men with biochemical recurrence after prostatectomy. Prostate Cancer Prostatic Dis. 17, 64–69 (2014).
pubmed: 24145624
doi: 10.1038/pcan.2013.49
Erho, N. et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 8, e66855 (2013).
pubmed: 23826159
pmcid: 3691249
doi: 10.1371/journal.pone.0066855
Ramnarine, V. R. et al. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. Gigascience 7, giy050 (2018).
Zhao, S. G. et al. High-throughput transcriptomic analysis nominates proteasomal genes as age-specific biomarkers and therapeutic targets in prostate cancer. Prostate Cancer Prostatic Dis. 18, 229–236 (2015).
pubmed: 25986914
pmcid: 4579590
doi: 10.1038/pcan.2015.22
Boormans, J. L. et al. Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer. Int J. Cancer 133, 335–345 (2013).
pubmed: 23319146
doi: 10.1002/ijc.28025
Ross-Adams, H. et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine 2, 1133–1144 (2015).
pubmed: 26501111
pmcid: 4588396
doi: 10.1016/j.ebiom.2015.07.017
Ross, A. E. et al. Tissue-based genomics augments post-prostatectomy risk stratification in a natural history cohort of intermediate- and high-risk men. Eur. Urol. 69, 157–165 (2016).
pubmed: 26058959
doi: 10.1016/j.eururo.2015.05.042
Pakula, H. et al. Distinct mesenchymal cell states mediate prostate cancer progression. Zenodo https://doi.org/10.5281/zenodo.10069628 (2023).
Tan, A. C., Naiman, D. Q., Xu, L., Winslow, R. L. & Geman, D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21, 3896–3904 (2005).
pubmed: 16105897
doi: 10.1093/bioinformatics/bti631
Geman, D., d’Avignon, C., Naiman, D. Q. & Winslow, R. L. Classifying gene expression profiles from pairwise mRNA comparisons. Stat. Appl. Genet. Mol. Biol. 3, Article19 (2004).
pubmed: 16646797
doi: 10.2202/1544-6115.1071
Omar, M. et al. Using biological constraints to improve prediction in precision oncology. iScience 26, 106108 (2023).
Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).
doi: 10.1080/01621459.1958.10501452
Cox, D. R. Regression Models and Life-Tables. J. R. Stat. Soc.: Ser. B (Methodol.) 34, 187–202 (1972).
Stopsack, K. H. et al. Multiplex immunofluorescence in formalin-fixed paraffin-embedded tumor tissue to identify single-cell-level PI3K pathway activation. Clin. Cancer Res. 26, 5903–5913 (2020).
pubmed: 32913135
pmcid: 7669556
doi: 10.1158/1078-0432.CCR-20-2000
Sadeghipour, A. & Babaheidarian, P. Making formalin-fixed, paraffin embedded blocks. Methods Mol. Biol. 1897, 253–268 (2019).
pubmed: 30539450
doi: 10.1007/978-1-4939-8935-5_22
Milligan, M. Trichrome stain for formalin-fixed tissue. Am. J. Clin. Pathol. 10, 184 (1946).
pubmed: 20273801
doi: 10.1093/ajcp/16.11_ts.184
Leonard, A. K. et al. Methods for the visualization and analysis of extracellular matrix protein structure and degradation. Methods Cell Biol. 143, 79–95 (2018).
pubmed: 29310793
pmcid: 6317720
doi: 10.1016/bs.mcb.2017.08.005
Rodig, S. J. Preparing paraffin tissue sections for staining. Cold Spring Harb. Protoc. 2021 https://doi.org/10.1101/pdb.prot099663 (2021).
Cacciatore, S. et al. Metabolic profiling in formalin-fixed and paraffin-embedded prostate cancer tissues. Mol. Cancer Res. 15, 439–447 (2017).
pubmed: 28074002
pmcid: 5552883
doi: 10.1158/1541-7786.MCR-16-0262
Patel, S. S. et al. The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4-positive T cells that are PD-1-negative. Blood 134, 2059–2069 (2019).
pubmed: 31697809
pmcid: 7218752
Patel, S. S. & Rodig, S. J. Overview of tissue imaging methods. Methods Mol. Biol. 2055, 455–465 (2020).
pubmed: 31502165
doi: 10.1007/978-1-4939-9773-2_21
Carey, C. D. et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood 130, 2420–2430 (2017).
pubmed: 28893733
pmcid: 5766840
doi: 10.1182/blood-2017-03-770719
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
pmcid: 5715110
doi: 10.1038/s41598-017-17204-5
Parra, E. R. et al. Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci. Rep. 7, 13380 (2017).
pubmed: 29042640
pmcid: 5645415
doi: 10.1038/s41598-017-13942-8
Rosenthal, J. et al. Building tools for machine learning and artificial intelligence in cancer research: best practices and a case study with the PathML Toolkit for computational pathology. Mol. Cancer Res. 20, 202–206 (2022).
pubmed: 34880124
doi: 10.1158/1541-7786.MCR-21-0665
Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).
pubmed: 25201529
pmcid: 4772677
doi: 10.1016/j.cell.2014.08.017
Zhao, S. G. et al. The landscape of prognostic outlier genes in high-risk prostate cancer. Clin. Cancer Res. 22, 1777–1786 (2016).
pubmed: 26631616
doi: 10.1158/1078-0432.CCR-15-1250
Pakula, H. et al. metadata_mouse.csv. Zenodo (2023).