Development of an Accelerated Rotator-based Drug Release Method for the Evaluation of Bupivacaine Multivesicular Liposomes.

bupivacaine generic development in vitro release method liposomes multivesicular liposomes

Journal

Pharmaceutical research
ISSN: 1573-904X
Titre abrégé: Pharm Res
Pays: United States
ID NLM: 8406521

Informations de publication

Date de publication:
Feb 2024
Historique:
received: 03 10 2023
accepted: 22 12 2023
medline: 21 2 2024
pubmed: 12 1 2024
entrez: 11 1 2024
Statut: ppublish

Résumé

A multivesicular liposome (MVL) is a liposomal vehicle designed to achieve sustained release characteristics for drugs with short half-lives. For example, a commercial MVL formulation of bupivacaine has been approved by the U.S. Food and Drug Administration for local and regional analgesia. For complex formulations like those containing MVLs, challenges in developing an in vitro release testing (IVRT) method may hinder generic development and regulatory approval. In this study, we developed an accelerated rotator-based IVRT method with the ability to discriminate bupivacaine MVLs with different quality attributes. Three IVRT experimental setups including mesh tube, horizontal shaker, and vertical rotator were screened to ensure that at least 50% of bupivacaine can release from MVLs in 24 h. Sample dilution factors, incubation temperature, and the release media pH were optimized for the IVRT. The reproducibility of the developed IVRT method was validated with commercial bupivacaine MVLs. The discriminative capacity was assessed via comparing commercial and compromised bupivacaine MVL formulations. The rotator-based release setup was chosen due to the capability to obtain 70% of drug release within 24 h. The optimized testing conditions were chosen with a 50-fold dilution factor, a temperature of 37ºC, and a media pH of 7.4. An accelerated rotator-based IVRT method for bupivacaine MVLs was developed in this study, with the discriminatory ability to distinguish between formulations of different qualities. The developed IVRT method was a robust tool for generic development of MVL based formulations.

Identifiants

pubmed: 38212593
doi: 10.1007/s11095-023-03651-5
pii: 10.1007/s11095-023-03651-5
doi:

Substances chimiques

Liposomes 0
Delayed-Action Preparations 0
Bupivacaine Y8335394RO

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

293-303

Subventions

Organisme : U.S. Food and Drug Administration
ID : 75F40120C00127

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Mantripragada S. A lipid based depot (DepoFoam® technology) for sustained release drug delivery. Prog Lipid Res. 2002;41(5):392–406.
doi: 10.1016/S0163-7827(02)00004-8 pubmed: 12121719
Sankaram MB, Kim S. Multivesicular liposomes with controlled release of encapsulated biologically active substances. 1998.
Kim S, Turker MS, Chi EY, Sela S, Martin GM. Preparation of multivesicular liposomes. BBA - Biomembranes. 1983;728(3):339–48.
doi: 10.1016/0005-2736(83)90504-7 pubmed: 6824663
Spector MS, Zasadzinski JA, Sankaram MB. Topology of multivesicular liposomes, a model biliquid foam. Langmuir. 1996;12(20):4704–8.
doi: 10.1021/la960218s
Ellena JF, Le M, Cafiso DS, Solis RM, Langston M, Sankaram MB. Distribution of phospholipids and triglycerides in multivesicular lipid particles. Drug Del J Del Target Ther Agents. 1999;6(2):97–106.
Exparel [package insert] Pacira Pharmaceuticals. 2018.
FDA In Brief: FDA approves new use of Exparel for nerve block pain relief following shoulder surgeries | FDA [Internet]. [cited 2023 Oct 22]. https://www.fda.gov/news-events/fda-brief/fda-brief-fda-approves-new-use-exparel-nerve-block-pain-relief-following-shoulder-surgeries .
Tampa D, Newswire G, Biosciences P, Therapeutics F. Pacira BioSciences Reports Preliminary Unaudited Total Revenue for 2022 of $ 666 . 8 Million [Internet]. 2023.  chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://investor.pacira.com/node/16036/pdf .
Orange Book: Approved Drug Products with Therapeutic Equivalence Evaluations [Internet]. [cited 2023 Oct 22]. https://www.accessdata.fda.gov/scripts/cder/ob/patent_info.cfm?Product_No=001&Appl_No=022496&Appl_type=N .
U.S. Food and Drug Administration. Center for Drug Evaluation and Research (CDER). Liposome drug products: chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation [Internet]. [cited 2023 Oct 22]. https://www.fda.gov/media/70837/download .
U.S. Food and Drug Administration. Center for Drug Evaluation and Research (CDER). Draft guidance on bupivacaine liposomal injection [Internet]. 2018 [cited 2023 Oct 22]. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070570.pdf .
Ye Q, Katre N, Sankaram M. Modulation of drug loading in multivescular liposomes. 2000.
Jain SK, Gupta Y, Jain A, Bhola M. Multivesicular liposomes bearing celecoxib-β-cyclodextrin complex for transdermal delivery. Drug Deliv. 2007;14(6):327–35.
doi: 10.1080/10717540601098740 pubmed: 17701522
Mantripragada B. Sankaram, Sinil Kim. Preparation of multivesicular liposomes for controlled release of encapsulated biologically active substances. 1999.
Zheng N, Jiang W, Lionberger R, Yu LX. Bioequivalence for liposomal drug products. AAPS Adv Pharm Sci Series. 2014;13:275–96.
doi: 10.1007/978-1-4939-1252-0_11
Solomon D, Gupta N, Mulla NS, Shukla S, Guerrero YA, Gupta V. Role of in vitro release methods in liposomal formulation development: challenges and regulatory perspective. AAPS J. 2017;19(6):1669–81.
doi: 10.1208/s12248-017-0142-0 pubmed: 28924630
Tang J, Srinivasan S, Yuan W, Ming R, Liu Y, Dai Z, et al. Development of a flow-through USP 4 apparatus drug release assay for the evaluation of amphotericin B liposome. Eur J Pharm Biopharm. 2019;1(134):107–16.
doi: 10.1016/j.ejpb.2018.11.010
Yuan W, Kuai R, Dai Z, Yuan Y, Zheng N, Jiang W, et al. Development of a flow-through USP-4 apparatus drug release assay to evaluate doxorubicin liposomes. AAPS J. 2017;19(1):150–60.
doi: 10.1208/s12248-016-9958-2 pubmed: 27485642
Manna S, Wu Y, Wang Y, Koo B, Chen L, Petrochenko P, et al. Probing the mechanism of bupivacaine drug release from multivesicular liposomes. J Control Release. 2019;294:279–87.
doi: 10.1016/j.jconrel.2018.12.029 pubmed: 30576748
Shah VP, Tsong Y, Sathe P, Williams RL. Dissolution profile comparison using similarity factor, f2. Dissolut Technol. 1999;6(3):15–15.
doi: 10.14227/DT060399P15
Saranadasa H, Krishnamoorthy K. A multivariate test for similarity of two dissolution profiles. J Biopharm Stat. 2007;15(2):265–78. https://doi.org/10.1081/BIP-200049832 .
doi: 10.1081/BIP-200049832
D’Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res. 2006;23(3):460–74.
Rockville M. <711> Dissolution. In: The United States Pharmacopeia The National Formulary. 2011.
Li T, Chandrashekar A, Beig A, Walker J, Hong JKY, Benet A, et al. Characterization of attributes and in vitro performance of exenatide-loaded PLGA long-acting release microspheres. Eur J Pharm Biopharm. 2021;1(158):401–9.
doi: 10.1016/j.ejpb.2020.10.008
Amatya S, Park EJ, Park JH, Kim JS, Seol E, Lee H, et al. Drug release testing methods of polymeric particulate drug formulations. J Pharm Investig. 2013;43(4):259–66.
doi: 10.1007/s40005-013-0072-5
Sułkowski WW, Pentak D, Nowak K, Sułkowska A. The influence of temperature, cholesterol content and pH on liposome stability. J Mol Struct. 2005;744–747(SPEC. ISS.):737–47.
Liu R. Water-insoluble drug formulation. second. Water-Insoluble Drug Formulation, Second Edition. CRC Press; 2008. P 72–73.
Usach I, Martinez R, Festini T, Peris JE. Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site. Adv Ther. 2019;36(11):2986–96.
doi: 10.1007/s12325-019-01101-6 pubmed: 31587143 pmcid: 6822791
Kinnunen HM, Mrsny RJ. Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical and physiological properties of the subcutaneous injection site. J Control Release. 2014;182(1):22–32.
doi: 10.1016/j.jconrel.2014.03.011 pubmed: 24631859
Kinnunen HM, Sharma V, Contreras-Rojas LR, Yu Y, Alleman C, Sreedhara A, et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J Control Release. 2015;31(214):94–102.
doi: 10.1016/j.jconrel.2015.07.016
Torres-Terán I, Venczel M, Klein S. Prediction of subcutaneous drug absorption - do we have reliable data to design a simulated interstitial fluid? Int J Pharm. 2021;15(610):121257.
doi: 10.1016/j.ijpharm.2021.121257
Coetzee JH, Hattingh J, Mitchell G. Rat interstitial fluid proteins. Comp Biochem Physiol A Physiol. 1982;72(1):173–8.
doi: 10.1016/0300-9629(82)90028-7
Gilanyi M, Ikrenyi C, Fekete J, Ikrenyi K, Kovach AGB. Ion concentrations in subcutaneous interstitial fluid: measured versus expected values. Am J Physiol. 1998;255.  https://doi.org/10.1152/ajprenal.1988.255.3.F513 .
Rawat A, Stippler E, Shah VP, Burgess DJ. Validation of USP apparatus 4 method for microsphere in vitro release testing using Risperdal® Consta®. Int J Pharm. 2011;420(2):198–205.
doi: 10.1016/j.ijpharm.2011.08.035 pubmed: 21889583
Frijlink HW, Eissens AC, Hefting NR, Poelstra K, Lerk CF, Meijer DKF. The effect of parenterally administered cyclodextrins on cholesterol levels in the rat. Pharm Res. 1991;8(1):9–16.
doi: 10.1023/A:1015861719134 pubmed: 2014215
Fréville JC, Dollo G, le Corre P, Chevanne F, le Verge R. Controlled systemic absorption and increased anesthetic effect of bupivacaine following epidural administration of bupivacaine-hydroxypropyl-beta-cyclodextrin complex. Pharm Res. 1996;13(10):1576–80.
doi: 10.1023/A:1016000217550 pubmed: 8899854
Meyer F, Lohmann D, Kulicke W-M. Determination of the viscoelastic behavior of sodium hyaluronate in phosphate buffered saline with rheo-mechanical and rheo-optical methods. J Rheol (N Y N Y). 2009;53(4):799–818.
doi: 10.1122/1.3122985
Akdogan Y, Reichenwallner J, Hinderberger D. Evidence for water-tuned structural differences in proteins: an approach emphasizing variations in local hydrophilicity. PLoS One. 2012;7(9):45681.
Automated Screening: BSA Viscosity Versus Concentration and Temperature [Internet]. 2023.  http://www.rheosense.com/viscosity .
Yadav S, Shire SJ, Kalonia DS. Viscosity analysis of high concentration bovine serum albumin aqueous solutions. Pharm Res. 2011;28(8):1973–83.
doi: 10.1007/s11095-011-0424-7 pubmed: 21491149
Hong JKY, Schutzman R, Olsen K, Chandrashekar A, Schwendeman SP. Mapping in vivo microclimate pH distribution in exenatide-encapsulated PLGA microspheres. J Control Release. 2022;1(352):438–49.
doi: 10.1016/j.jconrel.2022.08.043

Auteurs

Ziyun Xia (Z)

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
Biointerfaces Institute, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.

Minzhi Yu (M)

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
Biointerfaces Institute, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.

Yayuan Liu (Y)

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
Biointerfaces Institute, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.

Wenmin Yuan (W)

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
Biointerfaces Institute, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.

Yan Wang (Y)

Division of Therapeutic Performance 1, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.

Xiaoming Xu (X)

Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.

Jungeun Bae (J)

Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.

Anna Schwendeman (A)

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA. annaschw@med.umich.edu.
Biointerfaces Institute, University of Michigan, NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA. annaschw@med.umich.edu.

Articles similaires

Humans Middle Aged Female Male Surveys and Questionnaires
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Adolescent Child Female Humans Male

Classifications MeSH