Pancreatic cancer acquires resistance to MAPK pathway inhibition by clonal expansion and adaptive DNA hypermethylation.

Cancer Clonal expansion DNA methylation Epigenetic plasticity PDAC Therapy resistance WGBS

Journal

Clinical epigenetics
ISSN: 1868-7083
Titre abrégé: Clin Epigenetics
Pays: Germany
ID NLM: 101516977

Informations de publication

Date de publication:
16 Jan 2024
Historique:
received: 19 09 2023
accepted: 03 01 2024
medline: 17 1 2024
pubmed: 17 1 2024
entrez: 16 1 2024
Statut: epublish

Résumé

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors (MEK We found that resistant cell populations under increasing MEK Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treatment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic targeting.

Sections du résumé

BACKGROUND BACKGROUND
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors (MEK
RESULTS RESULTS
We found that resistant cell populations under increasing MEK
CONCLUSION CONCLUSIONS
Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treatment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic targeting.

Identifiants

pubmed: 38229153
doi: 10.1186/s13148-024-01623-z
pii: 10.1186/s13148-024-01623-z
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : LU-1944/3-1
Organisme : Deutsche Forschungsgemeinschaft
ID : SI1549/4-1
Organisme : Associazione Italiana per la Ricerca sul Cancro
ID : 12182
Organisme : Associazione Italiana per la Ricerca sul Cancro
ID : 12182
Organisme : Fondazione Cassa di Risparmio di Verona Vicenza Belluno e Ancona
ID : 203885/2017
Organisme : Fondazione Cassa di Risparmio di Verona Vicenza Belluno e Ancona
ID : 203885/2017
Organisme : Ministry of Science, North Rhine-Westphalia, Germany.
ID : PURE
Organisme : German Federal Ministry of Education and Research (BMBF)
ID : 01KD2206A/SATURN3
Organisme : Ministry of Culture and Science of the State of North Rhine-Westphalia
ID : research network CANcer TARgeting (CANTAR)

Informations de copyright

© 2024. The Author(s).

Références

Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501.
pubmed: 25719666 pmcid: 4523082 doi: 10.1038/nature14169
Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32(2):185–203.
doi: 10.1016/j.ccell.2017.07.007
Chan-Seng-Yue M, Kim JC, Wilson GW, Ng K, Figueroa EF, O’Kane GM, et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet. 2020;52(2):231–40.
pubmed: 31932696 doi: 10.1038/s41588-019-0566-9
Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 2004;11(12):1192–7.
pubmed: 15543157 doi: 10.1038/nsmb859
Collisson EA, Trejo CL, Silva JM, Gu S, Korkola JE, Heiser LM, et al. A central role for RAF–>MEK–>ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov. 2012;2(8):685–93.
pubmed: 22628411 pmcid: 3425446 doi: 10.1158/2159-8290.CD-11-0347
Walters DM, Lindberg JM, Adair SJ, Newhook TE, Cowan CR, Stokes JB, et al. Inhibition of the growth of patient-derived pancreatic cancer xenografts with the MEK inhibitor trametinib is augmented by combined treatment with the epidermal growth factor receptor/HER2 inhibitor lapatinib. Neoplasia. 2013;15(2):143–55.
pubmed: 23441129 pmcid: 3579317 doi: 10.1593/neo.121712
Vena F, Li Causi E, Rodriguez-Justo M, Goodstal S, Hagemann T, Hartley JA, et al. The MEK1/2 inhibitor pimasertib enhances gemcitabine efficacy in pancreatic cancer models by altering ribonucleotide reductase subunit-1 (RRM1). Clin Cancer Res. 2015;21(24):5563–77.
pubmed: 26228206 doi: 10.1158/1078-0432.CCR-15-0485
Van Laethem JL, Riess H, Jassem J, Haas M, Martens UM, Weekes C, et al. Phase I/II study of refametinib (BAY 86–9766) in combination with gemcitabine in advanced pancreatic cancer. Target Oncol. 2017;12(1):97–109.
pubmed: 27975152 doi: 10.1007/s11523-016-0469-y
Infante JR, Somer BG, Park JO, Li C-P, Scheulen ME, Kasubhai SM, et al. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. Eur J Cancer. 2014;50(12):2072–81.
pubmed: 24915778 doi: 10.1016/j.ejca.2014.04.024
Chung V, McDonough S, Philip PA, Cardin D, Wang-Gillam A, Hui L, et al. Effect of selumetinib and MK-2206 vs axaliplatin and fluorouracil in patients with metastatic pancreatic cancer after prior therapy: SWOG S1115 study randomized clinical trial. JAMA Oncol. 2017;3(4):516–22.
pubmed: 27978579 pmcid: 5665683 doi: 10.1001/jamaoncol.2016.5383
Van Cutsem E, Hidalgo M, Canon JL, Macarulla T, Bazin I, Poddubskaya E, et al. Phase I/II trial of pimasertib plus gemcitabine in patients with metastatic pancreatic cancer. Int J Cancer. 2018;143(8):2053–64.
pubmed: 29756206 doi: 10.1002/ijc.31603
Fedele C, Ran H, Diskin B, Wei W, Jen J, Geer MJ, et al. SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discov. 2018;8(10):1237–49.
pubmed: 30045908 pmcid: 6170706 doi: 10.1158/2159-8290.CD-18-0444
Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24(7):954–60.
pubmed: 29808009 doi: 10.1038/s41591-018-0024-8
Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, Pazarentzos E, et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet. 2015;47(3):250–6.
pubmed: 25665005 pmcid: 4930244 doi: 10.1038/ng.3218
Ponz-Sarvise M, Corbo V, Tiriac H, Engle DD, Frese KK, Oni TE, et al. Identification of resistance pathways specific to malignancy using organoid models of pancreatic cancer. Clin Cancer Res. 2019;25(22):6742.
pubmed: 31492749 pmcid: 6858952 doi: 10.1158/1078-0432.CCR-19-1398
Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514(7524):628–32.
pubmed: 25119024 pmcid: 4376130 doi: 10.1038/nature13611
Santana-Codina N, Roeth AA, Zhang Y, Yang A, Mashadova O, Asara JM, et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat Commun. 2018;9(1):4945.
pubmed: 30470748 pmcid: 6251888 doi: 10.1038/s41467-018-07472-8
Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25(4):628–40.
pubmed: 30833752 pmcid: 6484853 doi: 10.1038/s41591-019-0368-8
Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, et al. Protective autophagy elicited by RAF–>MEK–>ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25(4):620–7.
pubmed: 30833748 pmcid: 6452642 doi: 10.1038/s41591-019-0367-9
Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141(1):69–80.
pubmed: 20371346 pmcid: 2851638 doi: 10.1016/j.cell.2010.02.027
Wang Z, Hausmann S, Lyu R, Li TM, Lofgren SM, Flores NM, et al. SETD5-coordinated chromatin reprogramming regulates adaptive resistance to targeted pancreatic cancer therapy. Cancer Cell. 2020;37(6):834-49e13.
pubmed: 32442403 pmcid: 8187079 doi: 10.1016/j.ccell.2020.04.014
Hessmann E, Johnsen SA, Siveke JT, Ellenrieder V. Epigenetic treatment of pancreatic cancer: is there a therapeutic perspective on the horizon? Gut. 2017;66(1):168–79.
pubmed: 27811314 doi: 10.1136/gutjnl-2016-312539
Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153(1):38–55.
pubmed: 23540689 pmcid: 3648790 doi: 10.1016/j.cell.2013.03.008
Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet. 2013;14(11):765–80.
pubmed: 24105274 doi: 10.1038/nrg3554
Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sanchez-Rivera FJ, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21(10):1163–71.
pubmed: 26390243 pmcid: 4959788 doi: 10.1038/nm.3952
Heid I, Steiger K, Trajkovic-Arsic M, Settles M, Eßwein MR, Erkan M, et al. Co-clinical assessment of tumor cellularity in pancreatic cancer. Clin Cancer Res. 2016;23(6):1461–70.
pubmed: 27663591 doi: 10.1158/1078-0432.CCR-15-2432
Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.
pubmed: 26909576 doi: 10.1038/nature16965
Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–3.
pubmed: 21460848 pmcid: 3755490 doi: 10.1038/nm.2344
Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47(10):1168–78.
pubmed: 26343385 pmcid: 4912058 doi: 10.1038/ng.3398
Salgia R, Kulkarni P. The genetic/non-genetic duality of drug “resistance” in cancer. Trends Cancer. 2018;4(2):110–8.
pubmed: 29458961 pmcid: 5822736 doi: 10.1016/j.trecan.2018.01.001
Jager M, Wang K, Bauer S, Smedley D, Krawitz P, Robinson PN. Jannovar: a java library for exome annotation. Hum Mutat. 2014;35(5):548–55.
pubmed: 24677618 doi: 10.1002/humu.22531
Notta F, Chan-Seng-Yue M, Lemire M, Li Y, Wilson GW, Connor AA, et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature. 2016;538(7625):378–82.
pubmed: 27732578 pmcid: 5446075 doi: 10.1038/nature19823
Leitao E, Beygo J, Zeschnigk M, Klein-Hitpass L, Bargull M, Rahmann S, et al. Locus-specific DNA methylation analysis by targeted deep bisulfite sequencing. Methods Mol Biol. 2018;1767:351–66.
pubmed: 29524145 doi: 10.1007/978-1-4939-7774-1_19
Roe JS, Hwang CI, Somerville TDD, Milazzo JP, Lee EJ, Da Silva B, et al. Enhancer reprogramming promotes pancreatic cancer metastasis. Cell. 2017;170(5):875-88e20.
pubmed: 28757253 pmcid: 5726277 doi: 10.1016/j.cell.2017.07.007
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017;356(6337):eaai2239.
doi: 10.1126/science.aaj2239
Xuan Lin QX, Sian S, An O, Thieffry D, Jha S, Benoukraf T. MethMotif: an integrative cell specific database of transcription factor binding motifs coupled with DNA methylation profiles. Nucleic Acids Res. 2019;47(D1):D145–54.
pubmed: 30380113 doi: 10.1093/nar/gky1005
Konieczkowski DJ, Johannessen CM, Garraway LA. A convergence-based framework for cancer drug resistance. Cancer Cell. 2018;33(5):801–15.
pubmed: 29763622 pmcid: 5957297 doi: 10.1016/j.ccell.2018.03.025
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.
pubmed: 22439926 doi: 10.1016/j.ccr.2012.02.022
Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, Mulvey HE, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 2016;22(3):262–9.
pubmed: 26828195 pmcid: 4900892 doi: 10.1038/nm.4040
Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611–29.
pubmed: 28397828 pmcid: 5720366 doi: 10.1038/nrclinonc.2017.44
McDonald OG, Li X, Saunders T, Tryggvadottir R, Mentch SJ, Warmoes MO, et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet. 2017;49(3):367–76.
pubmed: 28092686 pmcid: 5695682 doi: 10.1038/ng.3753
Bestor TH, Edwards JR, Boulard M. Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci USA. 2015;112(22):6796.
pubmed: 25368180 doi: 10.1073/pnas.1415301111
Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953;3(6):285–90.
pubmed: 13081480
Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics. 2016;32(18):2866–8.
pubmed: 27153664 pmcid: 5018366 doi: 10.1093/bioinformatics/btw230
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinf. 2014;15:182.
doi: 10.1186/1471-2105-15-182
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9.
pubmed: 28263959 pmcid: 5600148 doi: 10.1038/nmeth.4197
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.
pubmed: 26925227 doi: 10.12688/f1000research.7563.1
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Pedersen BS, Eyring K, De S, Yang IV, Schwartz DA. Fast and accurate alignment of long bisulfite-seq reads. arXiv. 2014; https://arxiv.org/abs/1401.129
Hansen KD, Langmead B, Irizarry RA. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 2012;13(10):R83.
pubmed: 23034175 pmcid: 3491411 doi: 10.1186/gb-2012-13-10-r83
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–61.
pubmed: 29155950 doi: 10.1093/nar/gkx1098
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1–2):324–38.
pubmed: 25557080 doi: 10.1016/j.cell.2014.12.021
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013; https://arxiv.org/abs/1303.3997
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Gaspar JM. Improved peak-calling with MACS2. bioRxiv. 2018; https://doi.org/10.1101/496521
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31(12):2032–4.
pubmed: 25697820 pmcid: 4765878 doi: 10.1093/bioinformatics/btv098
Garrison E, Gabor M. Haplotype-based variant detection from short-read sequencing. arXiv. 2012; https://arxiv.org/abs/1207.3907
Köster J, Dijkstra LJ, Marschall T, Schönhuth A. Enhancing sensitivity and controlling false discovery rate in somatic indel discovery. bioRxiv. 2019; https://doi.org/10.1101/741256
Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.
pubmed: 22908215 doi: 10.1093/bioinformatics/bts480
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93.
pubmed: 21903627 pmcid: 3198575 doi: 10.1093/bioinformatics/btr509
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018

Auteurs

Laura K Godfrey (LK)

Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany.

Jan Forster (J)

German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany.
Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany.

Sven-Thorsten Liffers (ST)

Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany.

Christopher Schröder (C)

Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany.

Johannes Köster (J)

Bioinformatics and Computational Oncology, Institute for Artificial Intelligence in Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.

Leonie Henschel (L)

Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany.

Kerstin U Ludwig (KU)

Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany.

David Lähnemann (D)

German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany.

Marija Trajkovic-Arsic (M)

Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany.

Diana Behrens (D)

EPO Experimental Pharmacology and Oncology GmbH, Berlin-Buch, Germany.

Aldo Scarpa (A)

Department of Diagnostics and Public Health, Pathological Anatomy Section, University and Hospital Trust of Verona, Verona, Italy.
ARC-Net Cancer Research Centre, University and Hospital Trust of Verona, Verona, Italy.

Rita T Lawlor (RT)

ARC-Net Cancer Research Centre, University and Hospital Trust of Verona, Verona, Italy.

Kathrin E Witzke (KE)

Medizinisches Proteom-Center/Zentrum Für Protein-Diagnostik, Ruhr-Universität Bochum, Bochum, Germany.

Barbara Sitek (B)

Medizinisches Proteom-Center/Zentrum Für Protein-Diagnostik, Ruhr-Universität Bochum, Bochum, Germany.
Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany.

Steven A Johnsen (SA)

Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.

Sven Rahmann (S)

Algorithmic Bioinformatics, Center for Bioinformatics Saar and Saarland University, Saarland Informatics Campus, Saarbrücken, Germany.

Bernhard Horsthemke (B)

Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.

Michael Zeschnigk (M)

German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany.
Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.

Jens T Siveke (JT)

Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. jens.siveke@uk-essen.de.
German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany. jens.siveke@uk-essen.de.
National Center for Tumor Diseases (NCT) West, Campus Essen, Essen, Germany. jens.siveke@uk-essen.de.

Classifications MeSH