Molecular characteristics and improved survival prediction in a cohort of 2023 ependymomas.

DNA methylation Ependymoma Machine learning Molecular types Survival

Journal

Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041

Informations de publication

Date de publication:
24 Jan 2024
Historique:
received: 19 09 2023
accepted: 21 12 2023
revised: 04 12 2023
medline: 24 1 2024
pubmed: 24 1 2024
entrez: 24 1 2024
Statut: epublish

Résumé

The diagnosis of ependymoma has moved from a purely histopathological review with limited prognostic value to an integrated diagnosis, relying heavily on molecular information. However, as the integrated approach is still novel and some molecular ependymoma subtypes are quite rare, few studies have correlated integrated pathology and clinical outcome, often focusing on small series of single molecular types. We collected data from 2023 ependymomas as classified by DNA methylation profiling, consisting of 1736 previously published and 287 unpublished methylation profiles. Methylation data and clinical information were correlated, and an integrated model was developed to predict progression-free survival. Patients with EPN-PFA, EPN-ZFTA, and EPN-MYCN tumors showed the worst outcome with 10-year overall survival rates of 56%, 62%, and 32%, respectively. EPN-PFA harbored chromosome 1q gains and/or 6q losses as markers for worse survival. In supratentorial EPN-ZFTA, a combined loss of CDKN2A and B indicated worse survival, whereas a single loss did not. Twelve out of 200 EPN-ZFTA (6%) were located in the posterior fossa, and these tumors relapsed or progressed even earlier than supratentorial tumors with a combined loss of CDKN2A/B. Patients with MPE and PF-SE, generally regarded as non-aggressive tumors, only had a 10-year progression-free survival of 59% and 65%, respectively. For the prediction of the 5-year progression-free survival, Kaplan-Meier estimators based on the molecular subtype, a Support Vector Machine based on methylation, and an integrated model based on clinical factors, CNV data, and predicted methylation scores achieved balanced accuracies of 66%, 68%, and 73%, respectively. Excluding samples with low prediction scores resulted in balanced accuracies of over 80%. In sum, our large-scale analysis of ependymomas provides robust information about molecular features and their clinical meaning. Our data are particularly relevant for rare and hardly explored tumor subtypes and seemingly benign variants that display higher recurrence rates than previously believed.

Identifiants

pubmed: 38265522
doi: 10.1007/s00401-023-02674-x
pii: 10.1007/s00401-023-02674-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

24

Informations de copyright

© 2024. The Author(s).

Références

Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD et al (2014) Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics 30:1363–1369. https://doi.org/10.1093/bioinformatics/btu049
doi: 10.1093/bioinformatics/btu049 pubmed: 24478339 pmcid: 4016708
Baroni LV, Sundaresan L, Heled A, Coltin H, Pajtler KW, Lin T et al (2021) Ultra high-risk PFA ependymoma is characterized by loss of chromosome 6q. Neuro Oncol 23:1360–1370. https://doi.org/10.1093/neuonc/noab034
doi: 10.1093/neuonc/noab034 pubmed: 33580238 pmcid: 8328032
Bockmayr M, Harnisch K, Pohl LC, Schweizer L, Mohme T, Korner M et al (2022) Comprehensive profiling of myxopapillary ependymomas identifies a distinct molecular subtype with relapsing disease. Neuro Oncol 24:1689–1699. https://doi.org/10.1093/neuonc/noac088
doi: 10.1093/neuonc/noac088 pubmed: 35380708 pmcid: 9527524
Cage TA, Clark AJ, Aranda D, Gupta N, Sun PP, Parsa AT et al (2013) A systematic review of treatment outcomes in pediatric patients with intracranial ependymomas. J Neurosurg Pediatr 11:673–681. https://doi.org/10.3171/2013.2.PEDS12345
doi: 10.3171/2013.2.PEDS12345 pubmed: 23540528
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474. https://doi.org/10.1038/nature26000
doi: 10.1038/nature26000 pubmed: 29539639 pmcid: 6093218
Capper D, Stichel D, Sahm F, Jones DTW, Schrimpf D, Sill M et al (2018) Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol 136:181–210. https://doi.org/10.1007/s00401-018-1879-y
doi: 10.1007/s00401-018-1879-y pubmed: 29967940 pmcid: 6060790
Cavalli FMG, Hubner JM, Sharma T, Luu B, Sill M, Zapotocky M et al (2018) Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathol 136:227–237. https://doi.org/10.1007/s00401-018-1888-x
doi: 10.1007/s00401-018-1888-x pubmed: 30019219 pmcid: 6373486
Ellison DW, Aldape KD, Capper D, Fouladi M, Gilbert MR, Gilbertson RJ et al (2020) cIMPACT-NOW update 7: advancing the molecular classification of ependymal tumors. Brain Pathol 30:863–866. https://doi.org/10.1111/bpa.12866
doi: 10.1111/bpa.12866 pubmed: 32502305 pmcid: 8018155
Ellison DW, Kocak M, Figarella-Branger D, Felice G, Catherine G, Pietsch T et al (2011) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 10:7. https://doi.org/10.1186/1477-5751-10-7
doi: 10.1186/1477-5751-10-7 pubmed: 21627842 pmcid: 3117833
Fortin JP, Triche TJ Jr, Hansen KD (2017) Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 33:558–560. https://doi.org/10.1093/bioinformatics/btw691
doi: 10.1093/bioinformatics/btw691 pubmed: 28035024
Fukuoka K, Kanemura Y, Shofuda T, Fukushima S, Yamashita S, Narushima D et al (2018) Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors. Acta Neuropathol Commun 6:134. https://doi.org/10.1186/s40478-018-0630-1
doi: 10.1186/s40478-018-0630-1 pubmed: 30514397 pmcid: 6278135
Ghasemi DR, Sill M, Okonechnikov K, Korshunov A, Yip S, Schutz PW et al (2019) MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol 138:1075–1089. https://doi.org/10.1007/s00401-019-02056-2
doi: 10.1007/s00401-019-02056-2 pubmed: 31414211 pmcid: 6851394
Hansen KD (2016) IlluminaHumanMethylation450kanno.ilmn12.hg19: annotation for Illumina’s 450k methylation arrays. R package version 0.6.0.
Hansen KD (2016) IlluminaHumanMethylationEPICanno.ilm10b2.hg19: annotation for Illumina’s EPIC methylation arrays. R package version 0.6.0. https://bitbucket.com/kasperdanielhansen/Illumina_EPIC
Hovestadt VZ, M. conumee: enhanced copy-number variation analysis using Illumina DNA methylation arrays. R package version 1.9.0. http://bioconductor.org/packages/conumee/
Jurmeister P, Bockmayr M, Seegerer P, Bockmayr T, Treue D, Montavon G et al (2019) Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases. Sci Transl Med 11(509):eaaw8513. https://doi.org/10.1126/scitranslmed.aaw8513
doi: 10.1126/scitranslmed.aaw8513 pubmed: 31511427
Keenan C, Graham RT, Harreld JH, Lucas JT Jr, Finkelstein D, Wheeler D et al (2020) Infratentorial C11orf95-fused gliomas share histologic, immunophenotypic, and molecular characteristics of supratentorial RELA-fused ependymoma. Acta Neuropathol 140:963–965. https://doi.org/10.1007/s00401-020-02238-3
doi: 10.1007/s00401-020-02238-3 pubmed: 33099686 pmcid: 8611811
Koelsche C, Schrimpf D, Stichel D, Sill M, Sahm F, Reuss DE et al (2021) Sarcoma classification by DNA methylation profiling. Nat Commun 12:498. https://doi.org/10.1038/s41467-020-20603-4
doi: 10.1038/s41467-020-20603-4 pubmed: 33479225 pmcid: 7819999
Leitheiser M, Capper D, Seegerer P, Lehmann A, Schuller U, Muller KR (2021) Machine learning models predict the primary sites of head and neck squamous cell carcinoma metastases based on DNA methylation. J Pathol 256(4):378–387. https://doi.org/10.1002/path.5845
doi: 10.1002/path.5845
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. https://doi.org/10.1007/s00401-007-0243-4
doi: 10.1007/s00401-007-0243-4 pubmed: 17618441 pmcid: 1929165
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, World Health Organization, International Agency for Research on Cancer (2016) WHO classification of tumours of the central nervous system. International Agency for Research on Cancer, Lyon
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106
doi: 10.1093/neuonc/noab106 pubmed: 34185076 pmcid: 8328013
Maros ME, Capper D, Jones DTW, Hovestadt V, von Deimling A, Pfister SM et al (2020) Machine learning workflows to estimate class probabilities for precision cancer diagnostics on DNA methylation microarray data. Nat Protoc 15:479–512. https://doi.org/10.1038/s41596-019-0251-6
doi: 10.1038/s41596-019-0251-6 pubmed: 31932775
Merchant TE, Bendel AE, Sabin ND, Burger PC, Shaw DW, Chang E et al (2019) Conformal radiation therapy for pediatric ependymoma, chemotherapy for incompletely resected ependymoma, and observation for completely resected, supratentorial ependymoma. J Clin Oncol 37:974–983. https://doi.org/10.1200/JCO.18.01765
doi: 10.1200/JCO.18.01765 pubmed: 30811284 pmcid: 7186586
Moran S, Martinez-Cardus A, Sayols S, Musulen E, Balana C, Estival-Gonzalez A et al (2016) Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 17:1386–1395. https://doi.org/10.1016/S1470-2045(16)30297-2
doi: 10.1016/S1470-2045(16)30297-2 pubmed: 27575023
Morrall M, Reed-Berendt R, Moss K, Stocks H, Houston AL, Siddell P et al (2019) Neurocognitive, academic and functional outcomes in survivors of infant ependymoma (UKCCSG CNS 9204). Childs Nerv Syst 35:411–420. https://doi.org/10.1007/s00381-018-4015-3
doi: 10.1007/s00381-018-4015-3 pubmed: 30554263
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C et al (2022) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol 24:v1–v95. https://doi.org/10.1093/neuonc/noac202
doi: 10.1093/neuonc/noac202 pubmed: 36196752 pmcid: 9533228
Ostrom QT, Price M, Ryan K, Edelson J, Neff C, Cioffi G et al (2022) CBTRUS statistical report: pediatric brain tumor foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol 24:iii1–iii38. https://doi.org/10.1093/neuonc/noac161
Pajtler KW, Wen J, Sill M, Lin T, Orisme W, Tang B et al (2018) Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 136:211–226. https://doi.org/10.1007/s00401-018-1877-0
doi: 10.1007/s00401-018-1877-0 pubmed: 29909548 pmcid: 6105278
Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743. https://doi.org/10.1016/j.ccell.2015.04.002
doi: 10.1016/j.ccell.2015.04.002 pubmed: 25965575 pmcid: 4712639
Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV et al (2015) De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 8:6. https://doi.org/10.1186/1756-8935-8-6
doi: 10.1186/1756-8935-8-6 pubmed: 25972926 pmcid: 4429355
Pratt D, Lucas CG, Selvam PP, Abdullaev Z, Ketchum C, Quezado M et al (2022) Recurrent ACVR1 mutations in posterior fossa ependymoma. Acta Neuropathol 144:373–376. https://doi.org/10.1007/s00401-022-02435-2
doi: 10.1007/s00401-022-02435-2 pubmed: 35587280
R Core Team (2019) R: a language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/
Raffeld M, Abdullaev Z, Pack SD, Xi L, Nagaraj S, Briceno N et al (2020) High level MYCN amplification and distinct methylation signature define an aggressive subtype of spinal cord ependymoma. Acta Neuropathol Commun 8:101. https://doi.org/10.1186/s40478-020-00973-y
doi: 10.1186/s40478-020-00973-y pubmed: 32641156 pmcid: 7346356
Ramaswamy V, Hielscher T, Mack SC, Lassaletta A, Lin T, Pajtler KW et al (2016) Therapeutic impact of cytoreductive surgery and irradiation of posterior fossa ependymoma in the molecular era: a retrospective multicohort analysis. J Clin Oncol 34:2468–2477. https://doi.org/10.1200/JCO.2015.65.7825
doi: 10.1200/JCO.2015.65.7825 pubmed: 27269943 pmcid: 4962737
Ritzmann TA, Chapman RJ, Kilday JP, Thorp N, Modena P, Dineen RA et al (2022) SIOP Ependymoma I: final results, long-term follow-up, and molecular analysis of the trial cohort—a BIOMECA Consortium Study. Neuro Oncol 24:936–948. https://doi.org/10.1093/neuonc/noac012
doi: 10.1093/neuonc/noac012 pubmed: 35018471 pmcid: 9159435
Safaei S, Mohme M, Niesen J, Schuller U, Bockmayr M (2021) DIMEimmune: robust estimation of infiltrating lymphocytes in CNS tumors from DNA methylation profiles. Oncoimmunology 10:1932365. https://doi.org/10.1080/2162402X.2021.1932365
doi: 10.1080/2162402X.2021.1932365 pubmed: 34235002 pmcid: 8216185
Sturm D, Capper D, Andreiuolo F, Gessi M, Kolsche C, Reinhardt A et al (2023) Multiomic neuropathology improves diagnostic accuracy in pediatric neuro-oncology. Nat Med 29:917–926. https://doi.org/10.1038/s41591-023-02255-1
doi: 10.1038/s41591-023-02255-1 pubmed: 36928815 pmcid: 10115638
Thomas C, Thierfelder F, Trager M, Soschinski P, Muther M, Edelmann D et al (2021) TERT promoter mutation and chromosome 6 loss define a high-risk subtype of ependymoma evolving from posterior fossa subependymoma. Acta Neuropathol 141:959–970. https://doi.org/10.1007/s00401-021-02300-8
doi: 10.1007/s00401-021-02300-8 pubmed: 33755803 pmcid: 8113189
Trager M, Schweizer L, Eilis P, Schmid S, Hain EG, Dittmayer C et al (2023) Adult intracranial ependymoma-relevance of DNA methylation profiling for diagnosis, prognosis and treatment. Neuro Oncol 25(7):1286–1298. https://doi.org/10.1093/neuonc/noad030
doi: 10.1093/neuonc/noad030 pubmed: 36734226
Zheng T, Ghasemi DR, Okonechnikov K, Korshunov A, Sill M, Maass KK et al (2021) Cross-species genomics reveals oncogenic dependencies in ZFTA/C11orf95 fusion-positive supratentorial ependymomas. Cancer Discov 11:2230–2247. https://doi.org/10.1158/2159-8290.CD-20-0963
doi: 10.1158/2159-8290.CD-20-0963 pubmed: 33879448

Auteurs

Lara C Pohl (LC)

Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.

Maximilian Leitheiser (M)

Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Institute of Pathology, Ludwig Maximilians University Hospital Munich, Munich, Germany.

Denise Obrecht (D)

Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Leonille Schweizer (L)

Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.

Annika K Wefers (AK)

Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Alicia Eckhardt (A)

Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.
Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumor Center-University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Mark Raffeld (M)

Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Dominik Sturm (D)

Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.

Kristian W Pajtler (KW)

Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.

Stefan Rutkowski (S)

Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Kohei Fukuoka (K)

Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan.

Koichi Ichimura (K)

Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.

Michael Bockmayr (M)

Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. m.bockmayr@uke.de.
Research Institute Children's Cancer Center Hamburg, Hamburg, Germany. m.bockmayr@uke.de.
Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. m.bockmayr@uke.de.

Ulrich Schüller (U)

Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. u.schueller@uke.de.
Research Institute Children's Cancer Center Hamburg, Hamburg, Germany. u.schueller@uke.de.
Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. u.schueller@uke.de.

Classifications MeSH