Downregulation of praja2 restrains endocytosis and boosts tyrosine kinase receptors in kidney cancer.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
20 Feb 2024
Historique:
received: 15 02 2023
accepted: 16 01 2024
medline: 21 2 2024
pubmed: 21 2 2024
entrez: 21 2 2024
Statut: epublish

Résumé

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer in the adult population. Late diagnosis, resistance to therapeutics and recurrence of metastatic lesions account for the highest mortality rate among kidney cancer patients. Identifying novel biomarkers for early cancer detection and elucidating the mechanisms underlying ccRCC will provide clues to treat this aggressive malignant tumor. Here, we report that the ubiquitin ligase praja2 forms a complex with-and ubiquitylates the AP2 adapter complex, contributing to receptor endocytosis and clearance. In human RCC tissues and cells, downregulation of praja2 by oncogenic miRNAs (oncomiRs) and the proteasome markedly impairs endocytosis and clearance of the epidermal growth factor receptor (EGFR), and amplifies downstream mitogenic and proliferative signaling. Restoring praja2 levels in RCC cells downregulates EGFR, rewires cancer cell metabolism and ultimately inhibits tumor cell growth and metastasis. Accordingly, genetic ablation of praja2 in mice upregulates RTKs (i.e. EGFR and VEGFR) and induces epithelial and vascular alterations in the kidney tissue.In summary, our findings identify a regulatory loop between oncomiRs and the ubiquitin proteasome system that finely controls RTKs endocytosis and clearance, positively impacting mitogenic signaling and kidney cancer growth.

Identifiants

pubmed: 38379085
doi: 10.1038/s42003-024-05823-4
pii: 10.1038/s42003-024-05823-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

208

Subventions

Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG2023-29124

Informations de copyright

© 2024. The Author(s).

Références

D’Avella, C., Abbosh, P., Pal, S. K. & Geynisman, D. M. Mutations in renal cell carcinoma. Urol. Oncol. 38, 763–773 (2020).
pubmed: 30478013 doi: 10.1016/j.urolonc.2018.10.027
Zarrabi, K., Paroya, A. & Wu, S. Emerging therapeutic agents for genitourinary cancers. J. Hematol. Oncol. 12, 89 (2019).
pubmed: 31484560 pmcid: 6727406 doi: 10.1186/s13045-019-0780-z
Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).
pubmed: 26935559 doi: 10.1016/j.eururo.2016.02.029
Parker, A. S. et al. Loss of expression of von Hippel-Lindau tumor suppressor protein associated with improved survival in patients with early-stage clear cell renal cell carcinoma. Urology 65, 1090–1095 (2005).
pubmed: 15893810 doi: 10.1016/j.urology.2004.12.040
Bissler, J. J. & Christopher Kingswood, J. Renal manifestation of tuberous sclerosis complex. Am. J. Med. Genet. C Semin. Med. Genet. 178, 338–347 (2018).
pubmed: 30307110 doi: 10.1002/ajmg.c.31654
Kaelin, W. G. Von Hippel-Lindau disease. Annu. Rev. Pathol. 2, 145–173 (2007).
pubmed: 18039096 doi: 10.1146/annurev.pathol.2.010506.092049
Choueiri, T. K. & Kaelin, W. G. Jr Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat. Med. 26, 1519–1530 (2020).
pubmed: 33020645 doi: 10.1038/s41591-020-1093-z
Jubb, A. M. et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1alpha, and carbonic anhydrase IX in human tumours. J. Clin. Pathol. 57, 504–512 (2004).
pubmed: 15113858 pmcid: 1770303 doi: 10.1136/jcp.2003.012963
Dorff, T. B., Pal, S. K. & Quinn, D. I. Novel tyrosine kinase inhibitors for renal cell carcinoma. Expert Rev. Clin. Pharmacol. 7, 67–73 (2014).
pubmed: 24308791 doi: 10.1586/17512433.2014.862496
Haake, S. M. et al. Tyrosine kinase signaling in clear cell and papillary renal cell carcinoma revealed by mass spectrometry-based phosphotyrosine proteomics. Clin. Cancer Res. 22, 5605–5616 (2016).
pubmed: 27220961 pmcid: 5122466 doi: 10.1158/1078-0432.CCR-15-1673
Marona, P. et al. c-Met as a key factor responsible for sustaining undifferentiated phenotype and therapy resistance in renal carcinomas. Cells 8, 272 (2019).
pubmed: 30909397 pmcid: 6468372 doi: 10.3390/cells8030272
Silva Paiva, R., Gomes, I., Casimiro, S., Fernandes, I. & Costa, L. c-Met expression in renal cell carcinoma with bone metastases. J. Bone Oncol. 25, 100315 (2020).
pubmed: 33024658 pmcid: 7527574 doi: 10.1016/j.jbo.2020.100315
Parker, M. I., Nikonova, A. S., Sun, D. & Golemis, E. A. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal. 67, 109497 (2020).
pubmed: 31830556 doi: 10.1016/j.cellsig.2019.109497
Rayego-Mateos, S. et al. Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage. Mediators Inflamm. 2018, 8739473 (2018).
pubmed: 30670929 pmcid: 6323488 doi: 10.1155/2018/8739473
Fazioli, F., Minichiello, L., Matoskova, B., Wong, W. T. & Di Fiore, P. P. eps15, a novel tyrosine kinase substrate, exhibits transforming activity. Mol. Cell. Biol. 13, 5814–5828 (1993).
pubmed: 7689153 pmcid: 360326
Adams, A., Thorn, J. M., Yamabhai, M., Kay, B. K. & O’Bryan, J. P. Intersectin, an adaptor protein involved in clathrin-mediated endocytosis, activates mitogenic signaling pathways. J. Biol. Chem. 275, 27414–27420 (2000).
pubmed: 10851244 doi: 10.1016/S0021-9258(19)61526-7
Rao, D. S. et al. Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells. Cancer Cell 3, 471–482 (2003).
pubmed: 12781365 doi: 10.1016/S1535-6108(03)00107-7
Haglund, K., Di Fiore, P. P. & Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603 (2003).
pubmed: 14607090 doi: 10.1016/j.tibs.2003.09.005
Polo, S., Fiore, P. P. & Sigismund, S. Keeping EGFR signaling in check Ubiquitin is the guardian. Cell Cycle 13, 681–682 (2014).
pubmed: 24526125 pmcid: 3979896 doi: 10.4161/cc.27855
Sigismund, S. et al. Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J. 32, 2140–2157 (2013).
pubmed: 23799367 pmcid: 3730230 doi: 10.1038/emboj.2013.149
Nakashima, S. et al. Small G protein Ral and its downstream molecules regulate endocytosis of EGF and insulin receptors. EMBO J. 18, 3629–3642 (1999).
pubmed: 10393179 pmcid: 1171441 doi: 10.1093/emboj/18.13.3629
Savio, M. G. et al. USP9X controls EGFR fate by deubiquitinating the endocytic adaptor Eps15. Curr. Biol. 26, 173–183 (2016).
pubmed: 26748853 doi: 10.1016/j.cub.2015.11.050
Katz, M. et al. Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4. Traffic 3, 740–751 (2002).
pubmed: 12230472 doi: 10.1034/j.1600-0854.2002.31006.x
Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).
pubmed: 11919637 doi: 10.1038/416451a
Hoeller, D. et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 8, 163–U145 (2006).
pubmed: 16429130 doi: 10.1038/ncb1354
Lherbette, M., Redlingshofer, L., Brodsky, F. M., Schaap, I. A. T. & Dannhauser, P. N. The AP2 adaptor enhances clathrin coat stiffness (vol 286, pg 4074, 2021). FEBS J. 289, 564–564 (2022).
Beacham, G. M., Partlow, E. A. & Hollopeter, G. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic 20, 741–751 (2019).
pubmed: 31313456 pmcid: 6774827 doi: 10.1111/tra.12677
Traub, L. M. & Bonifacino, J. S. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 5, a016790 (2013).
pubmed: 24186068 pmcid: 3809577 doi: 10.1101/cshperspect.a016790
Olusanya, O., Andrews, P. D., Swedlow, J. R. & Smythe, E. Phosphorylation of threonine 156 of the mu2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Curr. Biol. 11, 896–900 (2001).
pubmed: 11516654 doi: 10.1016/S0960-9822(01)00240-8
Kirchhausen, T. Clathrin adaptors really adapt. Cell 109, 413–416 (2002).
pubmed: 12086597 doi: 10.1016/S0092-8674(02)00751-1
Sepe, M. et al. Proteolytic control of neurite outgrowth inhibitor NOGO-A by the cAMP/PKA pathway. Proc. Natl Acad. Sci. USA 111, 15729–15734 (2014).
pubmed: 25331889 pmcid: 4226093 doi: 10.1073/pnas.1410274111
Senatore, E. et al. The TBC1D31/praja2 complex controls primary ciliogenesis through PKA-directed OFD1 ubiquitylation. EMBO J. 40, e106503 (2021).
pubmed: 33934390 pmcid: 8126939 doi: 10.15252/embj.2020106503
Rinaldi, L., Sepe, M., Delle Donne, R. & Feliciello, A. A dynamic interface between ubiquitylation and cAMP signaling. Front. Pharmacol. 6, 177 (2015).
pubmed: 26388770 pmcid: 4559665 doi: 10.3389/fphar.2015.00177
Rinaldi, L. et al. praja2 regulates KSR1 stability and mitogenic signaling. Cell Death Dis. 7, e2230 (2016).
pubmed: 27195677 pmcid: 4917648 doi: 10.1038/cddis.2016.109
Gong, M. T. et al. Regulatory function of praja ring finger ubiquitin ligase 2 mediated by the P2rx3/P2rx7 axis in mouse hippocampal neuronal cells. Am. J. Physiol. Cell Physiol. 318, C1123–C1135 (2020).
pubmed: 32267716 doi: 10.1152/ajpcell.00070.2019
Zhang, P., Fu, W. Y., Fu, A. K. Y. & Ip, N. Y. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat. Commun. 6, 8665 (2015).
pubmed: 26503494 doi: 10.1038/ncomms9665
Sakamaki, J. et al. Role of the SIK2-p35-PJA2 complex in pancreatic beta-cell functional compensation. Nat. Cell Biol. 16, 234–244 (2014).
pubmed: 24561619 pmcid: 4107453 doi: 10.1038/ncb2919
Zhong, J. et al. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death Dis. 8, e2763 (2017).
pubmed: 28471450 pmcid: 5520684 doi: 10.1038/cddis.2017.102
Delle Donne, R. et al. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Commun. Biol. 5, 780 (2022).
pubmed: 35918402 pmcid: 9345969 doi: 10.1038/s42003-022-03639-8
Lignitto, L. et al. Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat. Commun. 4, 1822 (2013).
pubmed: 23652010 doi: 10.1038/ncomms2791
Zhao, Z., Zhu, L., Xing, Y. & Zhang, Z. Praja2 suppresses the growth of gastric cancer by ubiquitylation of KSR1 and inhibiting MEK-ERK signal pathways. Aging 13, 3886–3897 (2021).
pubmed: 33461174 pmcid: 7906149 doi: 10.18632/aging.202356
McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).
pubmed: 21779028 doi: 10.1038/nrm3151
Sorkin, A., Mazzotti, M., Sorkina, T., Scotto, L. & Beguinot, L. Epidermal growth factor receptor interaction with clathrin adaptors is mediated by the Tyr974-containing internalization motif. J. Biol. Chem. 271, 13377–13384 (1996).
pubmed: 8662849 doi: 10.1074/jbc.271.23.13377
Senatore, E. et al. Pathophysiology of primary cilia: signaling and proteostasis regulation. Front. Cell Dev. Biol. 10, 833086 (2022).
pubmed: 35646931 pmcid: 9130585 doi: 10.3389/fcell.2022.833086
Pascolutti, R. et al. Molecularly distinct clathrin-coated pits differentially impact EGFR fate and signaling. Cell Rep. 27, 3049–3061 e3046 (2019).
pubmed: 31167147 pmcid: 6581797 doi: 10.1016/j.celrep.2019.05.017
Sosic, I., Bricelj, A. & Steinebach, C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem. Soc. Rev. 51, 3487–3534 (2022).
pubmed: 35393989 doi: 10.1039/D2CS00148A
Mathur, S., Fletcher, A. J., Branigan, E., Hay, R. T. & Virdee, S. Photocrosslinking activity-based probes for ubiquitin RING E3 ligases. Cell Chem. Biol. 27, 74–82.e76 (2020).
pubmed: 31859248 pmcid: 6963778 doi: 10.1016/j.chembiol.2019.11.013
Escudier, B. et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 30, 706–720 (2019).
pubmed: 30788497 doi: 10.1093/annonc/mdz056
Ricketts, C. J. et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 313–326.e315 (2018).
pubmed: 29617669 pmcid: 6075733 doi: 10.1016/j.celrep.2018.03.075
Dordevic, G. et al. EGFR protein overexpression correlates with chromosome 7 polysomy and poor prognostic parameters in clear cell renal cell carcinoma. J. Biomed. Sci. 19, 40 (2012).
pubmed: 22475688 pmcid: 3368721 doi: 10.1186/1423-0127-19-40
Chandrashekar, D. S. et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658 (2017).
pubmed: 28732212 pmcid: 5516091 doi: 10.1016/j.neo.2017.05.002
Chandrashekar, D. S. et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 25, 18–27 (2022).
pubmed: 35078134 pmcid: 8788199 doi: 10.1016/j.neo.2022.01.001
Askari, H. et al. Recent findings on the role of microRNAs in genetic kidney diseases. Mol. Biol. Rep. 49, 7039–7056 (2022).
pubmed: 35717474 doi: 10.1007/s11033-022-07620-w
Cerqueira, D. M., Tayeb, M. & Ho, J. MicroRNAs in kidney development and disease. JCI Insight 7, e158277 (2022).
pubmed: 35531954 pmcid: 9090243 doi: 10.1172/jci.insight.158277
Jung, M. et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J. Cell Mol. Med. 13, 3918–3928 (2009).
pubmed: 19228262 pmcid: 4516539 doi: 10.1111/j.1582-4934.2009.00705.x
London, M. & Gallo, E. Epidermal growth factor receptor (EGFR) involvement in epithelial-derived cancers and its current antibody-based immunotherapies. Cell Biol. Int. 44, 1267–1282 (2020).
pubmed: 32162758 doi: 10.1002/cbin.11340
Jenkins, T. M., Cantrell, L. A., Stoler, M. H. & Mills, A. M. HER2 overexpression and amplification in uterine carcinosarcomas with serous morphology. Am. J. Surg. Pathol. 46, 435–442 (2022).
pubmed: 35125452 doi: 10.1097/PAS.0000000000001870
Levantini, E., Maroni, G., Del Re, M. & Tenen, D. G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol. 85, 253–275 (2022).
pubmed: 35427766 doi: 10.1016/j.semcancer.2022.04.002
Gansner, J. M., Dang, M., Ammerman, M. & Zon, L. I. Transplantation in zebrafish. Methods Cell Biol. 138, 629–647 (2017).
pubmed: 28129861 doi: 10.1016/bs.mcb.2016.08.006
Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58 (2018).
pubmed: 29455648 pmcid: 5817791 doi: 10.1186/s12943-018-0782-4
Smith, P. S. et al. Characterization of renal cell carcinoma-associated constitutional chromosome abnormalities by genome sequencing. Genes Chromosomes Cancer 59, 333–347 (2020).
pubmed: 31943436 pmcid: 7187337 doi: 10.1002/gcc.22833
Zhang, Q. et al. Activation and function of receptor tyrosine kinases in human clear cell renal cell carcinomas. BMC Cancer 19, 1044 (2019).
pubmed: 31690270 pmcid: 6833303 doi: 10.1186/s12885-019-6159-2
Alonso-Gordoa, T. et al. Targeting tyrosine kinases in renal cell carcinoma: “New Bullets against Old Guys”. Int. J. Mol. Sci. 20, 1901 (2019).
pubmed: 30999623 pmcid: 6515337 doi: 10.3390/ijms20081901
Shah, A. Y. et al. Outcomes of patients with metastatic clear-cell renal cell carcinoma treated with second-line VEGFR-TKI after first-line immune checkpoint inhibitors. Eur. J. Cancer 114, 67–75 (2019).
pubmed: 31075726 pmcid: 7537491 doi: 10.1016/j.ejca.2019.04.003
Nana-Sinkam, S. P. & Croce, C. M. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biol. 15, 445 (2014).
pubmed: 25315999 pmcid: 4709998 doi: 10.1186/s13059-014-0445-8
Negrini, M., Nicoloso, M. S. & Calin, G. A. MicroRNAs and cancer–new paradigms in molecular oncology. Curr. Opin. Cell Biol. 21, 470–479 (2009).
pubmed: 19411171 doi: 10.1016/j.ceb.2009.03.002
Li, D., Guo, Y. T., Tian, S., Zhu, C. H. & Sun, C. Y. CAV2 regulates Mir-4723/Wnt7A signalling axis through endocytosis and epithelial-mesenchymal transition to promote proliferation, invasion, and metastasis of pancreatic cancer cells. J. Cancer 13, 2200–2212 (2022).
pubmed: 35517414 pmcid: 9066196 doi: 10.7150/jca.69617
Aranda, J. F., Canfran-Duque, A., Goedeke, L., Suarez, Y. & Fernandez-Hernando, C. The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis. J. Cell Sci. 128, 3197–3209 (2015).
pubmed: 26163491 pmcid: 4582188
Serva, A. et al. miR-17-5p regulates endocytic trafficking through targeting TBC1D2/Armus. PLoS ONE 7, e52555 (2012).
pubmed: 23285084 pmcid: 3527550 doi: 10.1371/journal.pone.0052555
Vascotto, C. et al. Proteomic analysis of liver tissues subjected to early ischemia/reperfusion injury during human orthotopic liver transplantation. Proteomics 6, 3455–3465 (2006).
pubmed: 16622838 doi: 10.1002/pmic.200500770
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038
Tarallo, R. et al. The nuclear receptor ERbeta engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol. 18, 189 (2017).
pubmed: 29017520 pmcid: 5634881 doi: 10.1186/s13059-017-1321-0
Nassa, G. et al. Inhibition of histone methyltransferase DOT1L silences ERalpha gene and blocks proliferation of antiestrogen-resistant breast cancer cells. Sci. Adv. 5, eaav5590 (2019).
pubmed: 30775443 pmcid: 6365116 doi: 10.1126/sciadv.aav5590
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Marotta, P. et al. The paired box transcription factor Pax8 is essential for function and survival of adult thyroid cells. Mol. Cell. Endocrinol. 396, 26–36 (2014).
pubmed: 25127920 doi: 10.1016/j.mce.2014.08.004

Auteurs

Laura Rinaldi (L)

Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.

Francesco Chiuso (F)

Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.

Emanuela Senatore (E)

Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.

Domenica Borzacchiello (D)

Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.

Luca Lignitto (L)

Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France.

Rosa Iannucci (R)

Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.

Rossella Delle Donne (RD)

Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.

Mariano Fuggi (M)

Department of Advanced Biomedical Sciences, University Hospital Federico II, Naples, Italy.

Carla Reale (C)

Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy.

Filomena Russo (F)

Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy.

Nicola Antonino Russo (NA)

Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy.

Giorgio Giurato (G)

Genome Research Center for Health, Baronissi (SA), Italy.
Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, Baronissi (SA), Italy.

Francesca Rizzo (F)

Genome Research Center for Health, Baronissi (SA), Italy.
Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, Baronissi (SA), Italy.

Assunta Sellitto (A)

Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, Baronissi (SA), Italy.

Michele Santangelo (M)

Department of Advanced Biomedical Sciences, University Hospital Federico II, Naples, Italy.

Davide De Biase (D)

Department of Pharmacy, University of Salerno, Salerno, Italy.

Orlando Paciello (O)

Department of Veterinary Medicine and Animal Production, Pathology Unit, University Federico II, Naples, Italy.

Chiara D'Ambrosio (C)

Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy.

Stefano Amente (S)

Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.

Corrado Garbi (C)

Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.

Emiliano Dalla (E)

Department of Medicine, University of Udine, Udine, Italy.

Andrea Scaloni (A)

Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy.

Alessandro Weisz (A)

Genome Research Center for Health, Baronissi (SA), Italy.
Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, Baronissi (SA), Italy.

Concetta Ambrosino (C)

Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy.
Department of Science and Technology University of Sannio, Sannio, Italy.

Luigi Insabato (L)

Department of Advanced Biomedical Sciences, University Hospital Federico II, Naples, Italy.

Antonio Feliciello (A)

Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy. feliciel@unina.it.

Classifications MeSH