Downregulation of praja2 restrains endocytosis and boosts tyrosine kinase receptors in kidney cancer.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
20 Feb 2024
20 Feb 2024
Historique:
received:
15
02
2023
accepted:
16
01
2024
medline:
21
2
2024
pubmed:
21
2
2024
entrez:
21
2
2024
Statut:
epublish
Résumé
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer in the adult population. Late diagnosis, resistance to therapeutics and recurrence of metastatic lesions account for the highest mortality rate among kidney cancer patients. Identifying novel biomarkers for early cancer detection and elucidating the mechanisms underlying ccRCC will provide clues to treat this aggressive malignant tumor. Here, we report that the ubiquitin ligase praja2 forms a complex with-and ubiquitylates the AP2 adapter complex, contributing to receptor endocytosis and clearance. In human RCC tissues and cells, downregulation of praja2 by oncogenic miRNAs (oncomiRs) and the proteasome markedly impairs endocytosis and clearance of the epidermal growth factor receptor (EGFR), and amplifies downstream mitogenic and proliferative signaling. Restoring praja2 levels in RCC cells downregulates EGFR, rewires cancer cell metabolism and ultimately inhibits tumor cell growth and metastasis. Accordingly, genetic ablation of praja2 in mice upregulates RTKs (i.e. EGFR and VEGFR) and induces epithelial and vascular alterations in the kidney tissue.In summary, our findings identify a regulatory loop between oncomiRs and the ubiquitin proteasome system that finely controls RTKs endocytosis and clearance, positively impacting mitogenic signaling and kidney cancer growth.
Identifiants
pubmed: 38379085
doi: 10.1038/s42003-024-05823-4
pii: 10.1038/s42003-024-05823-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
208Subventions
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG2023-29124
Informations de copyright
© 2024. The Author(s).
Références
D’Avella, C., Abbosh, P., Pal, S. K. & Geynisman, D. M. Mutations in renal cell carcinoma. Urol. Oncol. 38, 763–773 (2020).
pubmed: 30478013
doi: 10.1016/j.urolonc.2018.10.027
Zarrabi, K., Paroya, A. & Wu, S. Emerging therapeutic agents for genitourinary cancers. J. Hematol. Oncol. 12, 89 (2019).
pubmed: 31484560
pmcid: 6727406
doi: 10.1186/s13045-019-0780-z
Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).
pubmed: 26935559
doi: 10.1016/j.eururo.2016.02.029
Parker, A. S. et al. Loss of expression of von Hippel-Lindau tumor suppressor protein associated with improved survival in patients with early-stage clear cell renal cell carcinoma. Urology 65, 1090–1095 (2005).
pubmed: 15893810
doi: 10.1016/j.urology.2004.12.040
Bissler, J. J. & Christopher Kingswood, J. Renal manifestation of tuberous sclerosis complex. Am. J. Med. Genet. C Semin. Med. Genet. 178, 338–347 (2018).
pubmed: 30307110
doi: 10.1002/ajmg.c.31654
Kaelin, W. G. Von Hippel-Lindau disease. Annu. Rev. Pathol. 2, 145–173 (2007).
pubmed: 18039096
doi: 10.1146/annurev.pathol.2.010506.092049
Choueiri, T. K. & Kaelin, W. G. Jr Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat. Med. 26, 1519–1530 (2020).
pubmed: 33020645
doi: 10.1038/s41591-020-1093-z
Jubb, A. M. et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1alpha, and carbonic anhydrase IX in human tumours. J. Clin. Pathol. 57, 504–512 (2004).
pubmed: 15113858
pmcid: 1770303
doi: 10.1136/jcp.2003.012963
Dorff, T. B., Pal, S. K. & Quinn, D. I. Novel tyrosine kinase inhibitors for renal cell carcinoma. Expert Rev. Clin. Pharmacol. 7, 67–73 (2014).
pubmed: 24308791
doi: 10.1586/17512433.2014.862496
Haake, S. M. et al. Tyrosine kinase signaling in clear cell and papillary renal cell carcinoma revealed by mass spectrometry-based phosphotyrosine proteomics. Clin. Cancer Res. 22, 5605–5616 (2016).
pubmed: 27220961
pmcid: 5122466
doi: 10.1158/1078-0432.CCR-15-1673
Marona, P. et al. c-Met as a key factor responsible for sustaining undifferentiated phenotype and therapy resistance in renal carcinomas. Cells 8, 272 (2019).
pubmed: 30909397
pmcid: 6468372
doi: 10.3390/cells8030272
Silva Paiva, R., Gomes, I., Casimiro, S., Fernandes, I. & Costa, L. c-Met expression in renal cell carcinoma with bone metastases. J. Bone Oncol. 25, 100315 (2020).
pubmed: 33024658
pmcid: 7527574
doi: 10.1016/j.jbo.2020.100315
Parker, M. I., Nikonova, A. S., Sun, D. & Golemis, E. A. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal. 67, 109497 (2020).
pubmed: 31830556
doi: 10.1016/j.cellsig.2019.109497
Rayego-Mateos, S. et al. Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage. Mediators Inflamm. 2018, 8739473 (2018).
pubmed: 30670929
pmcid: 6323488
doi: 10.1155/2018/8739473
Fazioli, F., Minichiello, L., Matoskova, B., Wong, W. T. & Di Fiore, P. P. eps15, a novel tyrosine kinase substrate, exhibits transforming activity. Mol. Cell. Biol. 13, 5814–5828 (1993).
pubmed: 7689153
pmcid: 360326
Adams, A., Thorn, J. M., Yamabhai, M., Kay, B. K. & O’Bryan, J. P. Intersectin, an adaptor protein involved in clathrin-mediated endocytosis, activates mitogenic signaling pathways. J. Biol. Chem. 275, 27414–27420 (2000).
pubmed: 10851244
doi: 10.1016/S0021-9258(19)61526-7
Rao, D. S. et al. Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells. Cancer Cell 3, 471–482 (2003).
pubmed: 12781365
doi: 10.1016/S1535-6108(03)00107-7
Haglund, K., Di Fiore, P. P. & Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603 (2003).
pubmed: 14607090
doi: 10.1016/j.tibs.2003.09.005
Polo, S., Fiore, P. P. & Sigismund, S. Keeping EGFR signaling in check Ubiquitin is the guardian. Cell Cycle 13, 681–682 (2014).
pubmed: 24526125
pmcid: 3979896
doi: 10.4161/cc.27855
Sigismund, S. et al. Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J. 32, 2140–2157 (2013).
pubmed: 23799367
pmcid: 3730230
doi: 10.1038/emboj.2013.149
Nakashima, S. et al. Small G protein Ral and its downstream molecules regulate endocytosis of EGF and insulin receptors. EMBO J. 18, 3629–3642 (1999).
pubmed: 10393179
pmcid: 1171441
doi: 10.1093/emboj/18.13.3629
Savio, M. G. et al. USP9X controls EGFR fate by deubiquitinating the endocytic adaptor Eps15. Curr. Biol. 26, 173–183 (2016).
pubmed: 26748853
doi: 10.1016/j.cub.2015.11.050
Katz, M. et al. Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4. Traffic 3, 740–751 (2002).
pubmed: 12230472
doi: 10.1034/j.1600-0854.2002.31006.x
Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002).
pubmed: 11919637
doi: 10.1038/416451a
Hoeller, D. et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 8, 163–U145 (2006).
pubmed: 16429130
doi: 10.1038/ncb1354
Lherbette, M., Redlingshofer, L., Brodsky, F. M., Schaap, I. A. T. & Dannhauser, P. N. The AP2 adaptor enhances clathrin coat stiffness (vol 286, pg 4074, 2021). FEBS J. 289, 564–564 (2022).
Beacham, G. M., Partlow, E. A. & Hollopeter, G. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic 20, 741–751 (2019).
pubmed: 31313456
pmcid: 6774827
doi: 10.1111/tra.12677
Traub, L. M. & Bonifacino, J. S. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 5, a016790 (2013).
pubmed: 24186068
pmcid: 3809577
doi: 10.1101/cshperspect.a016790
Olusanya, O., Andrews, P. D., Swedlow, J. R. & Smythe, E. Phosphorylation of threonine 156 of the mu2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Curr. Biol. 11, 896–900 (2001).
pubmed: 11516654
doi: 10.1016/S0960-9822(01)00240-8
Kirchhausen, T. Clathrin adaptors really adapt. Cell 109, 413–416 (2002).
pubmed: 12086597
doi: 10.1016/S0092-8674(02)00751-1
Sepe, M. et al. Proteolytic control of neurite outgrowth inhibitor NOGO-A by the cAMP/PKA pathway. Proc. Natl Acad. Sci. USA 111, 15729–15734 (2014).
pubmed: 25331889
pmcid: 4226093
doi: 10.1073/pnas.1410274111
Senatore, E. et al. The TBC1D31/praja2 complex controls primary ciliogenesis through PKA-directed OFD1 ubiquitylation. EMBO J. 40, e106503 (2021).
pubmed: 33934390
pmcid: 8126939
doi: 10.15252/embj.2020106503
Rinaldi, L., Sepe, M., Delle Donne, R. & Feliciello, A. A dynamic interface between ubiquitylation and cAMP signaling. Front. Pharmacol. 6, 177 (2015).
pubmed: 26388770
pmcid: 4559665
doi: 10.3389/fphar.2015.00177
Rinaldi, L. et al. praja2 regulates KSR1 stability and mitogenic signaling. Cell Death Dis. 7, e2230 (2016).
pubmed: 27195677
pmcid: 4917648
doi: 10.1038/cddis.2016.109
Gong, M. T. et al. Regulatory function of praja ring finger ubiquitin ligase 2 mediated by the P2rx3/P2rx7 axis in mouse hippocampal neuronal cells. Am. J. Physiol. Cell Physiol. 318, C1123–C1135 (2020).
pubmed: 32267716
doi: 10.1152/ajpcell.00070.2019
Zhang, P., Fu, W. Y., Fu, A. K. Y. & Ip, N. Y. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat. Commun. 6, 8665 (2015).
pubmed: 26503494
doi: 10.1038/ncomms9665
Sakamaki, J. et al. Role of the SIK2-p35-PJA2 complex in pancreatic beta-cell functional compensation. Nat. Cell Biol. 16, 234–244 (2014).
pubmed: 24561619
pmcid: 4107453
doi: 10.1038/ncb2919
Zhong, J. et al. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death Dis. 8, e2763 (2017).
pubmed: 28471450
pmcid: 5520684
doi: 10.1038/cddis.2017.102
Delle Donne, R. et al. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Commun. Biol. 5, 780 (2022).
pubmed: 35918402
pmcid: 9345969
doi: 10.1038/s42003-022-03639-8
Lignitto, L. et al. Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth. Nat. Commun. 4, 1822 (2013).
pubmed: 23652010
doi: 10.1038/ncomms2791
Zhao, Z., Zhu, L., Xing, Y. & Zhang, Z. Praja2 suppresses the growth of gastric cancer by ubiquitylation of KSR1 and inhibiting MEK-ERK signal pathways. Aging 13, 3886–3897 (2021).
pubmed: 33461174
pmcid: 7906149
doi: 10.18632/aging.202356
McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).
pubmed: 21779028
doi: 10.1038/nrm3151
Sorkin, A., Mazzotti, M., Sorkina, T., Scotto, L. & Beguinot, L. Epidermal growth factor receptor interaction with clathrin adaptors is mediated by the Tyr974-containing internalization motif. J. Biol. Chem. 271, 13377–13384 (1996).
pubmed: 8662849
doi: 10.1074/jbc.271.23.13377
Senatore, E. et al. Pathophysiology of primary cilia: signaling and proteostasis regulation. Front. Cell Dev. Biol. 10, 833086 (2022).
pubmed: 35646931
pmcid: 9130585
doi: 10.3389/fcell.2022.833086
Pascolutti, R. et al. Molecularly distinct clathrin-coated pits differentially impact EGFR fate and signaling. Cell Rep. 27, 3049–3061 e3046 (2019).
pubmed: 31167147
pmcid: 6581797
doi: 10.1016/j.celrep.2019.05.017
Sosic, I., Bricelj, A. & Steinebach, C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem. Soc. Rev. 51, 3487–3534 (2022).
pubmed: 35393989
doi: 10.1039/D2CS00148A
Mathur, S., Fletcher, A. J., Branigan, E., Hay, R. T. & Virdee, S. Photocrosslinking activity-based probes for ubiquitin RING E3 ligases. Cell Chem. Biol. 27, 74–82.e76 (2020).
pubmed: 31859248
pmcid: 6963778
doi: 10.1016/j.chembiol.2019.11.013
Escudier, B. et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 30, 706–720 (2019).
pubmed: 30788497
doi: 10.1093/annonc/mdz056
Ricketts, C. J. et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 313–326.e315 (2018).
pubmed: 29617669
pmcid: 6075733
doi: 10.1016/j.celrep.2018.03.075
Dordevic, G. et al. EGFR protein overexpression correlates with chromosome 7 polysomy and poor prognostic parameters in clear cell renal cell carcinoma. J. Biomed. Sci. 19, 40 (2012).
pubmed: 22475688
pmcid: 3368721
doi: 10.1186/1423-0127-19-40
Chandrashekar, D. S. et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658 (2017).
pubmed: 28732212
pmcid: 5516091
doi: 10.1016/j.neo.2017.05.002
Chandrashekar, D. S. et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 25, 18–27 (2022).
pubmed: 35078134
pmcid: 8788199
doi: 10.1016/j.neo.2022.01.001
Askari, H. et al. Recent findings on the role of microRNAs in genetic kidney diseases. Mol. Biol. Rep. 49, 7039–7056 (2022).
pubmed: 35717474
doi: 10.1007/s11033-022-07620-w
Cerqueira, D. M., Tayeb, M. & Ho, J. MicroRNAs in kidney development and disease. JCI Insight 7, e158277 (2022).
pubmed: 35531954
pmcid: 9090243
doi: 10.1172/jci.insight.158277
Jung, M. et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J. Cell Mol. Med. 13, 3918–3928 (2009).
pubmed: 19228262
pmcid: 4516539
doi: 10.1111/j.1582-4934.2009.00705.x
London, M. & Gallo, E. Epidermal growth factor receptor (EGFR) involvement in epithelial-derived cancers and its current antibody-based immunotherapies. Cell Biol. Int. 44, 1267–1282 (2020).
pubmed: 32162758
doi: 10.1002/cbin.11340
Jenkins, T. M., Cantrell, L. A., Stoler, M. H. & Mills, A. M. HER2 overexpression and amplification in uterine carcinosarcomas with serous morphology. Am. J. Surg. Pathol. 46, 435–442 (2022).
pubmed: 35125452
doi: 10.1097/PAS.0000000000001870
Levantini, E., Maroni, G., Del Re, M. & Tenen, D. G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol. 85, 253–275 (2022).
pubmed: 35427766
doi: 10.1016/j.semcancer.2022.04.002
Gansner, J. M., Dang, M., Ammerman, M. & Zon, L. I. Transplantation in zebrafish. Methods Cell Biol. 138, 629–647 (2017).
pubmed: 28129861
doi: 10.1016/bs.mcb.2016.08.006
Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58 (2018).
pubmed: 29455648
pmcid: 5817791
doi: 10.1186/s12943-018-0782-4
Smith, P. S. et al. Characterization of renal cell carcinoma-associated constitutional chromosome abnormalities by genome sequencing. Genes Chromosomes Cancer 59, 333–347 (2020).
pubmed: 31943436
pmcid: 7187337
doi: 10.1002/gcc.22833
Zhang, Q. et al. Activation and function of receptor tyrosine kinases in human clear cell renal cell carcinomas. BMC Cancer 19, 1044 (2019).
pubmed: 31690270
pmcid: 6833303
doi: 10.1186/s12885-019-6159-2
Alonso-Gordoa, T. et al. Targeting tyrosine kinases in renal cell carcinoma: “New Bullets against Old Guys”. Int. J. Mol. Sci. 20, 1901 (2019).
pubmed: 30999623
pmcid: 6515337
doi: 10.3390/ijms20081901
Shah, A. Y. et al. Outcomes of patients with metastatic clear-cell renal cell carcinoma treated with second-line VEGFR-TKI after first-line immune checkpoint inhibitors. Eur. J. Cancer 114, 67–75 (2019).
pubmed: 31075726
pmcid: 7537491
doi: 10.1016/j.ejca.2019.04.003
Nana-Sinkam, S. P. & Croce, C. M. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biol. 15, 445 (2014).
pubmed: 25315999
pmcid: 4709998
doi: 10.1186/s13059-014-0445-8
Negrini, M., Nicoloso, M. S. & Calin, G. A. MicroRNAs and cancer–new paradigms in molecular oncology. Curr. Opin. Cell Biol. 21, 470–479 (2009).
pubmed: 19411171
doi: 10.1016/j.ceb.2009.03.002
Li, D., Guo, Y. T., Tian, S., Zhu, C. H. & Sun, C. Y. CAV2 regulates Mir-4723/Wnt7A signalling axis through endocytosis and epithelial-mesenchymal transition to promote proliferation, invasion, and metastasis of pancreatic cancer cells. J. Cancer 13, 2200–2212 (2022).
pubmed: 35517414
pmcid: 9066196
doi: 10.7150/jca.69617
Aranda, J. F., Canfran-Duque, A., Goedeke, L., Suarez, Y. & Fernandez-Hernando, C. The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis. J. Cell Sci. 128, 3197–3209 (2015).
pubmed: 26163491
pmcid: 4582188
Serva, A. et al. miR-17-5p regulates endocytic trafficking through targeting TBC1D2/Armus. PLoS ONE 7, e52555 (2012).
pubmed: 23285084
pmcid: 3527550
doi: 10.1371/journal.pone.0052555
Vascotto, C. et al. Proteomic analysis of liver tissues subjected to early ischemia/reperfusion injury during human orthotopic liver transplantation. Proteomics 6, 3455–3465 (2006).
pubmed: 16622838
doi: 10.1002/pmic.200500770
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038
Tarallo, R. et al. The nuclear receptor ERbeta engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol. 18, 189 (2017).
pubmed: 29017520
pmcid: 5634881
doi: 10.1186/s13059-017-1321-0
Nassa, G. et al. Inhibition of histone methyltransferase DOT1L silences ERalpha gene and blocks proliferation of antiestrogen-resistant breast cancer cells. Sci. Adv. 5, eaav5590 (2019).
pubmed: 30775443
pmcid: 6365116
doi: 10.1126/sciadv.aav5590
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Marotta, P. et al. The paired box transcription factor Pax8 is essential for function and survival of adult thyroid cells. Mol. Cell. Endocrinol. 396, 26–36 (2014).
pubmed: 25127920
doi: 10.1016/j.mce.2014.08.004