Hyperacetylated histone H4 is a source of carbon contributing to lipid synthesis.

Acetylation Epigenetics Histone Reservoirs Lipid Metabolism

Journal

The EMBO journal
ISSN: 1460-2075
Titre abrégé: EMBO J
Pays: England
ID NLM: 8208664

Informations de publication

Date de publication:
21 Feb 2024
Historique:
received: 26 06 2023
accepted: 31 01 2024
revised: 12 01 2024
medline: 22 2 2024
pubmed: 22 2 2024
entrez: 22 2 2024
Statut: aheadofprint

Résumé

Histone modifications commonly integrate environmental cues with cellular metabolic outputs by affecting gene expression. However, chromatin modifications such as acetylation do not always correlate with transcription, pointing towards an alternative role of histone modifications in cellular metabolism. Using an approach that integrates mass spectrometry-based histone modification mapping and metabolomics with stable isotope tracers, we demonstrate that elevated lipids in acetyltransferase-depleted hepatocytes result from carbon atoms derived from deacetylation of hyperacetylated histone H4 flowing towards fatty acids. Consistently, enhanced lipid synthesis in acetyltransferase-depleted hepatocytes is dependent on histone deacetylases and acetyl-CoA synthetase ACSS2, but not on the substrate specificity of the acetyltransferases. Furthermore, we show that during diet-induced lipid synthesis the levels of hyperacetylated histone H4 decrease in hepatocytes and in mouse liver. In addition, overexpression of acetyltransferases can reverse diet-induced lipogenesis by blocking lipid droplet accumulation and maintaining the levels of hyperacetylated histone H4. Overall, these findings highlight hyperacetylated histones as a metabolite reservoir that can directly contribute carbon to lipid synthesis, constituting a novel function of chromatin in cellular metabolism.

Identifiants

pubmed: 38383863
doi: 10.1038/s44318-024-00053-0
pii: 10.1038/s44318-024-00053-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : EC | Horizon Europe | Excellent Science | HORIZON EUROPE Marie Sklodowska-Curie Actions (MSCA)
ID : 890750
Organisme : European Proteomics Infrastructure Consortium providing access (EPIC-XS)
ID : 0000424
Organisme : European Proteomics Infrastructure Consortium providing access (EPIC-XS)
ID : 0000463
Organisme : Research and Innovation Foundation (RIF)
ID : EXCELLENCE/0421/0342
Organisme : Research and Innovation Foundation (RIF)
ID : EXCELLENCE/0421/0302
Organisme : Research and Innovation Foundation (RIF)
ID : EXCELLENCE/0421/0152

Informations de copyright

© 2024. The Author(s).

Références

Al Shoyaib A, Archie SR, Karamyan VT (2020) Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res 37:12
doi: 10.1007/s11095-019-2745-x
Basile W, Salvatore M, Bassot C, Elofsson A (2019) Why do eukaryotic proteins contain more intrinsically disordered regions? PLoS Comput Biol 15:e1007186
pubmed: 31329574 pmcid: 6675126 doi: 10.1371/journal.pcbi.1007186
Behrends V, Tredwell GD, Bundy JG (2011) A software complement to AMDIS for processing GC-MS metabolomic data. Anal Biochem 415:206–208
pubmed: 21575589 doi: 10.1016/j.ab.2011.04.009
Charidemou E, Tsiarli MA, Theophanous A, Yilmaz V, Pitsouli C, Strati K, Griffin JL, Kirmizis A (2022) Histone acetyltransferase NAA40 modulates acetyl-CoA levels and lipid synthesis. BMC Biol 20:22
pubmed: 35057804 pmcid: 8781613 doi: 10.1186/s12915-021-01225-8
Cieniewicz AM, Moreland L, Ringel AE, Mackintosh SG, Raman A, Gilbert TM, Wolberger C, Tackett AJ, Taverna SD (2014) The bromodomain of gcn5 regulates site specificity of lysine acetylation on histone H3. Mol Cell Proteomics 13:2896–2910
pubmed: 25106422 pmcid: 4223480 doi: 10.1074/mcp.M114.038174
Dai Z, Ramesh V, Locasale JW (2020) The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 21:737–753
pubmed: 32908249 pmcid: 8059378 doi: 10.1038/s41576-020-0270-8
Fellows R, Denizot J, Stellato C, Cuomo A, Jain P, Stoyanova E, Balázsi S, Hajnády Z, Liebert A, Kazakevych J et al (2018) Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat Commun 9:105
pubmed: 29317660 pmcid: 5760624 doi: 10.1038/s41467-017-02651-5
Folch J, Lees M, Stanley HS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509
pubmed: 13428781 doi: 10.1016/S0021-9258(18)64849-5
Galdieri L, Vancura A (2012) Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem 287:23865–23876
pubmed: 22580297 pmcid: 3390662 doi: 10.1074/jbc.M112.380519
Gao X, Lin SH, Ren F, Li JT, Chen JJ, Yao CB, Yang Hbin, Jiang SX, Yan GQ, Wang D et al (2016) Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 7:11960
pubmed: 27357947 pmcid: 4931325 doi: 10.1038/ncomms11960
Gassaway BM, Petersen MC, Surovtseva V Y, Barber KW, Sheetz JB, Aerni HR, Merkel JS, Samuel VT, Shulman GI, Rinehart J (2020) PKCe contributes to lipid-induced insulin resistance through cross-talk with p70S6K and through previously unknown regulators of insulin signalling. Proc Natl Acad Sci USA 115:E8996–E9005
Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Investig 121:2102–2110
pubmed: 21633178 pmcid: 3104768 doi: 10.1172/JCI46069
Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M, Ganju RK, Pandita S, Choi K, Sukumar S, Pandita RK et al (2008) The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 Is essential for embryogenesis and oncogenesis. Mol Cell Biol 28:397–409
pubmed: 17967868 doi: 10.1128/MCB.01045-07
Hamsanathan S, Anthonymuthu T, Han S, Shinglot H, Siefken E, Sims A, Sen P, Pepper HL, Snyder NW, Bayir H et al (2022) Integrated-omics approach reveals persistent DNA damage rewires lipid metabolism and histone hyperacetylation via MYS-1/Tip60. Sci Adv 8:6083
doi: 10.1126/sciadv.abl6083
Haws SA, Leech CM, Denu JM (2020) Metabolism and the epigenome: a dynamic relationship. Trends Biochem Sci 45:731–747
pubmed: 32387193 pmcid: 8477637 doi: 10.1016/j.tibs.2020.04.002
Hole K, Damme PV, Dalva M, Aksnes H, Glomnes N, Varhaug JE, Lillehaug JR, Gevaert K, Arnesen T (2011) The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS ONE 6:24713
doi: 10.1371/journal.pone.0024713
Hsieh WC, Sutter BM, Ruess H, Barnes SD, Malladi VS, Tu BP (2022) Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes. Mol Cell 82:60–74.e5
pubmed: 34995509 pmcid: 8794035 doi: 10.1016/j.molcel.2021.12.015
Huang HM, Fan SJ, Zhou XR, Liu YJ, Li X, Liao LP, Huang J, Shi CC, Yu L, Fu R et al (2022) Histone deacetylase inhibitor givinostat attenuates nonalcoholic steatohepatitis and liver fibrosis. Acta Pharmacol Sin 43:941–953
pubmed: 34341511 doi: 10.1038/s41401-021-00725-1
Jackson V, Shires A, Chalkley R, Granner DK (1975) Studies on highly metabolically active acetylation and phosphorylation of histones. J Biol Chem 250:4856–4863
pubmed: 168194 doi: 10.1016/S0021-9258(19)41247-7
Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: epigenetics and metabolism. Cell 148:24–28
pubmed: 22265398 doi: 10.1016/j.cell.2012.01.001
Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048
pubmed: 19928838 pmcid: 2805091 doi: 10.1021/ac9019522
Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, Still CD, Gerhard GS, Han X, Dziura J et al (2011) Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA 108:16381–16385
pubmed: 21930939 pmcid: 3182681 doi: 10.1073/pnas.1113359108
Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee JH, Li W, Liu J, Rao G, Zhang X et al (2017) Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell 66:684–697.e9
pubmed: 28552616 pmcid: 5521213 doi: 10.1016/j.molcel.2017.04.026
Liu XJ, Duan NN, Liu C, Niu C, Liu XP, Wu J (2018) Characterization of a murine nonalcoholic steatohepatitis model induced by high-fat high calorie diet plus fructose and glucose in drinking water. Lab Investig 98:1184–1199
pubmed: 29959418 doi: 10.1038/s41374-018-0074-z
Lozoya OA, Martinez-Reyes I, Wang T, Grenet D, Bushel P, Li J, Chandel N, Woychik RP, Santos JH (2018) Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation. PLoS Biol 16:2005707
doi: 10.1371/journal.pbio.2005707
McDonnell E, Crown SB, Fox DB, Kitir B, Ilkayeva OR, Olsen CA, Grimsrud PA, Hirschey MD (2016) Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep 17:1463–1472
pubmed: 27806287 pmcid: 5123807 doi: 10.1016/j.celrep.2016.10.012
Mendoza M, Egervari G, Sidoli S, Donahue G, Alexander DC, Sen P, Garcia BA, Berger SL (2022) Enzymatic transfer of acetate on histones from lysine reservoir sites to lysine activating sites. Sci Adv 8:5688
doi: 10.1126/sciadv.abj5688
Mews P, Egervari G, Nativio R, Sidoli S, Donahue G, Lombroso SI, Alexander DC, Riesche SL, Heller EA, Nestler EJ et al (2019) Alcohol metabolism contributes to brain histone acetylation. Nature 574:717–721
pubmed: 31645761 pmcid: 6907081 doi: 10.1038/s41586-019-1700-7
Milo R (2013) What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35:1050–1055
pubmed: 24114984 pmcid: 3910158 doi: 10.1002/bies.201300066
Nirello VD, Rodrigues De Paula D, Araújo NVP, Varga-Weisz PD (2022) Does chromatin function as a metabolite reservoir? Trends Biochem Sci 47:732–735
pubmed: 35418348 doi: 10.1016/j.tibs.2022.03.016
Noberini R, Savoia EO, Brandini S, Greco F, Marra F, Bertalot G, Pruneri G, McDonnell LA, Bonaldi T (2021) Spatial epi-proteomics enabled by histone post-translational modification analysis from low-abundance clinical samples. Clin Epigenet 13:145
doi: 10.1186/s13148-021-01120-7
Okumura T (2011) Role of lipid droplet proteins in liver steatosis. J Physiol Biochem 67:629–636
pubmed: 21847662 doi: 10.1007/s13105-011-0110-6
Perez MF, Sarkies P (2023) Histone methyltransferase activity affects metabolism in human cells independently of transcriptional regulation. PLoS Biol 21:e3002354
pubmed: 37883365 pmcid: 10602318 doi: 10.1371/journal.pbio.3002354
Reid MA, Dai Z, Locasale JW (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19:1298–1306
pubmed: 29058720 pmcid: 5886854 doi: 10.1038/ncb3629
Reina-Campos M, Linares JF, Duran A, Cordes T, L’Hermitte A, Badur MG, Bhangoo MS, Thorson PK, Richards A, Rooslid T et al (2019) Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell 35:385–400.e9
pubmed: 30827887 pmcid: 6424636 doi: 10.1016/j.ccell.2019.01.018
Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90–101
pubmed: 27924077 doi: 10.1038/nrm.2016.140
Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, Goodwin LM, Smethurst E, Mason S, Blyth K et al (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27:57–71
pubmed: 25584894 pmcid: 4297291 doi: 10.1016/j.ccell.2014.12.002
Scott DC, Hammill JT, Min J, Rhee DY, Connelly M, Sviderskiy VO, Bhasin D, Chen Y, Ong SS, Chai SC et al (2017) Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. Nat Chem Biol 13:850–857
pubmed: 28581483 pmcid: 5577376 doi: 10.1038/nchembio.2386
Shurubor YI, D’Aurelio M, Clark-Matott J, Isakova EP, Deryabina YI, Beal MF, Cooper AJL, Krasnikov BF (2017) Determination of coenzyme A and acetyl-coenzyme A in biological samples using HPLC with UV detection. Molecules 22:1388
pubmed: 28832533 pmcid: 6151540 doi: 10.3390/molecules22091388
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787
pubmed: 16448051 doi: 10.1021/ac051437y
Soaita I, Megill E, Kantner D, Chatoff A, Cheong YJ, Clarke P, Arany Z, Snyder NW, Wellen KE, Trefely S (2023) Dynamic protein deacetylation is a limited carbon source for acetyl-CoA-dependent metabolism. J Biol Chem 299:104772
pubmed: 37142219 pmcid: 10244699 doi: 10.1016/j.jbc.2023.104772
Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781
doi: 10.1016/S1044-0305(99)00047-1
Tang S, Fang Y, Huang G, Xu X, Padilla‐Banks E, Fan W, Xu Q, Sanderson SM, Foley JF, Dowdy S et al (2017) Methionine metabolism is essential for SIRT 1‐regulated mouse embryonic stem cell maintenance and embryonic development. EMBO J 36:3175–3193
pubmed: 29021282 pmcid: 5666621 doi: 10.15252/embj.201796708
Tredwell GD, Keun HC (2015) ConvISA: A simple, convoluted method for isotopomer spectral analysis of fatty acids and cholesterol. Metab Eng 32:125–132
pubmed: 26432945 doi: 10.1016/j.ymben.2015.09.008
van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T (2011) NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet 7:e1002169
pubmed: 21750686 pmcid: 3131286 doi: 10.1371/journal.pgen.1002169
Vos MB, Lavine JE (2013) Dietary fructose in nonalcoholic fatty liver disease. Hepatology 57:2525–2531
pubmed: 23390127 doi: 10.1002/hep.26299
Wang T, Holt MV, Young NL (2018) The histone H4 proteoform dynamics in response to SUV4-20 inhibition reveals single molecule mechanisms of inhibitor resistance. Epigenet Chromatin 11:29
doi: 10.1186/s13072-018-0198-9
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080
pubmed: 19461003 pmcid: 2746744 doi: 10.1126/science.1164097
Wong CC, Qian Y, Yu J (2017) Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 36:3359–3374
pubmed: 28092669 pmcid: 5485177 doi: 10.1038/onc.2016.485
Ye C, Tu BP (2018) Sink into the epigenome: histones as repositories that influence cellular metabolism. Trends Endocrinol Metab 29:626–637
pubmed: 30001904 pmcid: 6109460 doi: 10.1016/j.tem.2018.06.002
Yuan ZF, Sidoli S, Marchione DM, Simithy J, Janssen KA, Szurgot MR, Garcia BA (2018) EpiProfile 2.0: a computational platform for processing epi-proteomics mass spectrometry data. J Proteome Res 17:2533–2541
pubmed: 29790754 pmcid: 6387837 doi: 10.1021/acs.jproteome.8b00133
Zhang C, Klett EL, Coleman RA (2013) Lipid signals and insulin resistance. Clin Lipidol 8:659–667
pubmed: 24533033 pmcid: 3921899 doi: 10.2217/clp.13.67
Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A et al (2020) Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579:586–591
pubmed: 32214246 pmcid: 7416516 doi: 10.1038/s41586-020-2101-7
Zhao S, Torres AM, Henry RA, Trefely S, Wallace M, Lee JV, Carrer A, Sengupta A, Campbell SL, Kuo YM et al (2016) ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep 17:1037–1052
pubmed: 27760311 pmcid: 5175409 doi: 10.1016/j.celrep.2016.09.069
Zheng Y, Thomas PM, Kelleher NL (2013) Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat Commun 4:2203
pubmed: 23892279 doi: 10.1038/ncomms3203

Auteurs

Evelina Charidemou (E)

Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.

Roberta Noberini (R)

Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy.
Department of Oncology and Haematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milano, Italy.

Chiara Ghirardi (C)

Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy.
Department of Oncology and Haematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milano, Italy.

Polymnia Georgiou (P)

Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.

Panayiota Marcou (P)

Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.

Andria Theophanous (A)

Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.

Katerina Strati (K)

Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus.

Hector Keun (H)

Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK.

Volker Behrends (V)

School of Life and Health Sciences, Whitelands College, University of Roehampton, London, UK.

Tiziana Bonaldi (T)

Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy.
Department of Oncology and Haematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milano, Italy.

Antonis Kirmizis (A)

Department of Biological Sciences, University of Cyprus, 2109, Nicosia, Cyprus. kirmizis@ucy.ac.cy.

Classifications MeSH