Bicarbonate signalling via G protein-coupled receptor regulates ischaemia-reperfusion injury.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 Feb 2024
27 Feb 2024
Historique:
received:
21
01
2023
accepted:
26
01
2024
medline:
28
2
2024
pubmed:
28
2
2024
entrez:
27
2
2024
Statut:
epublish
Résumé
Homoeostatic regulation of the acid-base balance is essential for cellular functional integrity. However, little is known about the molecular mechanism through which the acid-base balance regulates cellular responses. Here, we report that bicarbonate ions activate a G protein-coupled receptor (GPCR), i.e., GPR30, which leads to G
Identifiants
pubmed: 38413581
doi: 10.1038/s41467-024-45579-3
pii: 10.1038/s41467-024-45579-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1530Subventions
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP18K15051 and 20K16148
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP20gm6210026
Informations de copyright
© 2024. The Author(s).
Références
Brinkman, J. E. & Sharma, S. Physiology, metabolic alkalosis. (StatPearls Publishing, 2022).
Behrendorff, N., Floetenmeyer, M., Schwiening, C. & Thorn, P. Protons released during pancreatic acinar cell secretion acidify the lumen and contribute to pancreatitis in mice. Gastroenterology 139, 1711–1720 (2010).
pubmed: 20691184
doi: 10.1053/j.gastro.2010.07.051
Funato, Y. et al. The oncogenic PRL protein causes acid addiction of cells by stimulating lysosomal exocytosis. Dev. Cell 55, 387–397(2020).
pubmed: 32918875
doi: 10.1016/j.devcel.2020.08.009
Inserte, J. et al. High-fat diet improves tolerance to myocardial ischemia by delaying normalization of intracellular PH at reperfusion. J. Mol. Cell. Cardiol. 133, 164–173 (2019).
pubmed: 31194987
doi: 10.1016/j.yjmcc.2019.06.001
Kelmanson, I. V. et al. In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biol 48, 102178 (2021).
pubmed: 34773835
pmcid: 8600061
doi: 10.1016/j.redox.2021.102178
Osei-Owusu, J. et al. Molecular determinants of pH sensing in the proton-activated chloride channel. Proc. Natl Acad. Sci. USA. 119, e2200727119 (2022).
pubmed: 35878032
pmcid: 9351481
doi: 10.1073/pnas.2200727119
Ludwig, M. G. et al. Proton-sensing G-protein-coupled receptors. Nature 425, 93–98 (2003).
pubmed: 12955148
doi: 10.1038/nature01905
Murakami, N., Yokomizo, T., Okuno, T. & Shimizu, T. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J. Biol. Chem. 279, 42484–42491 (2004).
pubmed: 15280385
doi: 10.1074/jbc.M406561200
Wang, J. Q. et al. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J. Biol. Chem. 279, 45626–45633 (2004).
pubmed: 15326175
doi: 10.1074/jbc.M406966200
Imenez Silva, P. H., Camara, N. O. & Wagner, C. A. Role of proton-activated G protein-coupled receptors in pathophysiology. Am. J. Physiol. Cell Physiol. 323, C400–C414 (2022).
pubmed: 35759438
doi: 10.1152/ajpcell.00114.2022
Meigh, L. et al. CO
pubmed: 24220509
pmcid: 3821526
doi: 10.7554/eLife.01213
Caldwell, H. G. et al. Arterial carbon dioxide and bicarbonate rather than pH regulate cerebral blood flow in the setting of acute experimental metabolic alkalosis. J. Physiol. 599, 1439–1457 (2021).
pubmed: 33404065
doi: 10.1113/JP280682
Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).
pubmed: 28957666
pmcid: 5657612
doi: 10.1016/j.neuron.2017.07.030
Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).
pubmed: 18984166
pmcid: 2590943
doi: 10.1016/j.cell.2008.08.040
Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).
pubmed: 29443965
doi: 10.1038/nature25739
He, L. et al. Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci. Data 5, 180160 (2018).
pubmed: 30129931
pmcid: 6103262
doi: 10.1038/sdata.2018.160
Revankar, C. M., Cimino, D. F., Sklar, L. A., Arterburn, J. B. & Prossnitz, E. R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307, 1625–1630 (2005).
pubmed: 15705806
doi: 10.1126/science.1106943
Thomas, P., Pang, Y., Filardo, E. J. & Dong, J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146, 624–632 (2005).
pubmed: 15539556
doi: 10.1210/en.2004-1064
Mårtensson, U. E. et al. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology 150, 687–698 (2009).
pubmed: 18845638
doi: 10.1210/en.2008-0623
Ford, J. et al. GPR30 deficiency causes increased bone mass, mineralization, and growth plate proliferative activity in male mice. J. Bone Miner. Res. 26, 298–307 (2011).
pubmed: 20734455
doi: 10.1002/jbmr.209
Prossnitz, E. R. & Arterburn, J. B. International union of basic and clinical pharmacology. XCVII. G protein-coupled estrogen receptor and its pharmacologic modulators. Pharmacol. Rev 67, 505–540 (2015).
pubmed: 26023144
pmcid: 4485017
doi: 10.1124/pr.114.009712
Otto, C. et al. G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol. Endocrinology 149, 4846–4856 (2008).
pubmed: 18566127
doi: 10.1210/en.2008-0269
Tutzauer, J. et al. Ligand-independent G protein-coupled estrogen receptor/G protein-coupled receptor 30 activity: Lack of receptor-dependent effects of G-1 and 17β-estradiol. Mol. Pharmacol. 100, 271–282 (2021).
pubmed: 34330822
pmcid: 8626787
doi: 10.1124/molpharm.121.000259
Lamprecht, M. R. & Morrison, B. 3rd GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17β-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res 1563, 131–137 (2014).
pubmed: 24704272
doi: 10.1016/j.brainres.2014.03.037
Otto, C. et al. GPR30 does not mediate estrogenic responses in reproductive organs in mice. Biol. Reprod 80, 34–41 (2009).
pubmed: 18799753
doi: 10.1095/biolreprod.108.071175
Inoue, A. et al. TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9, 1021–1029 (2012).
pubmed: 22983457
doi: 10.1038/nmeth.2172
Kamel, K. S. & Halperin, M. L. Principles of acid–base physiology. In Fluid, Electrolyte and Acid-Base Physiology. 5th ed. (Elsevier, Kamel, S., Kamel, M. L. H., 2017).
Zhou, X. et al. Estrogen regulates Hippo signaling via GPER in breast cancer. J. Clin. Invest. 125, 2123–2135 (2015).
pubmed: 25893606
pmcid: 4463207
doi: 10.1172/JCI79573
Kooistra, A. J. et al. GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Res 49, D335–D343 (2021).
pubmed: 33270898
doi: 10.1093/nar/gkaa1080
Crouch, E. E. & Doetsch, F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat. Protoc. 13, 738–751 (2018).
pubmed: 29565899
doi: 10.1038/nprot.2017.158
Isensee, J. et al. Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology 150, 1722–1730 (2009).
pubmed: 19095739
doi: 10.1210/en.2008-1488
Hariharan, A. et al. The ion channel and GPCR toolkit of brain capillary pericytes. Front. Cell. Neurosci. 14, 601324 (2020).
pubmed: 33390906
pmcid: 7775489
doi: 10.3389/fncel.2020.601324
Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022).
pubmed: 35084939
pmcid: 8995178
doi: 10.1126/science.abi7377
Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).
pubmed: 19718040
doi: 10.1038/nm.2022
Zhu, W. et al. Sex difference in capillary reperfusion after transient middle cerebral artery occlusion in diabetic mice. Stroke 54, 364–373 (2023).
pubmed: 36689578
pmcid: 9883047
doi: 10.1161/STROKEAHA.122.040972
Shen, J. et al. PDGFR-β as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J. Cereb. Blood Flow Metab. 32, 353–367 (2012).
pubmed: 21952111
doi: 10.1038/jcbfm.2011.136
Ma, R. et al. Animal models of cerebral ischemia: a review. Biomed. Pharmacother. 131, 110686 (2020).
pubmed: 32937247
doi: 10.1016/j.biopha.2020.110686
Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).
pubmed: 17036005
pmcid: 1761848
doi: 10.1038/nature05193
Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).
pubmed: 24670647
pmcid: 3976267
doi: 10.1038/nature13165
Queliconi, B. B. et al. Bicarbonate modulates oxidative and functional damage in ischemia-reperfusion. Free Radic. Biol. Med. 55, 46–53 (2013).
pubmed: 23195687
doi: 10.1016/j.freeradbiomed.2012.11.007
Queliconi, B. B., Kowaltowski, A. J. & Gottlieb, R. A. Bicarbonate increases ischemia-reperfusion damage by inhibiting mitophagy. PLOS ONE 11, e0167678 (2016).
pubmed: 27973540
pmcid: 5156406
doi: 10.1371/journal.pone.0167678
Chen, Y. et al. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289, 625–628 (2000).
pubmed: 10915626
doi: 10.1126/science.289.5479.625
Owman, C., Blay, P., Nilsson, C. & Lolait, S. J. Cloning of human cDNA encoding a novel heptahelix receptor expressed in Burkitt’s lymphoma and widely distributed in brain and peripheral tissues. Biochem. Biophys. Res. Commun. 228, 285–292 (1996).
pubmed: 8920907
doi: 10.1006/bbrc.1996.1654
Carmeci, C., Thompson, D. A., Ring, H. Z., Francke, U. & Weigel, R. J. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45, 607–617 (1997).
pubmed: 9367686
doi: 10.1006/geno.1997.4972
Filardo, E. J., Quinn, J. A., Bland, K. I. & Frackelton, A. R. Jr Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol 14, 1649–1660 (2000).
pubmed: 11043579
doi: 10.1210/mend.14.10.0532
Bautista, N. M. et al. New insights into the allosteric effects of CO2 and bicarbonate on crocodilian hemoglobin. J. Exp. Biol. 224, jeb242615 (2021).
Zha, X. M., Xiong, Z. G. & Simon, R. P. pH and proton-sensitive receptors in brain ischemia. J. Cereb. Blood Flow Metab. 42, 1349–1363 (2022).
pubmed: 35301897
pmcid: 9274858
doi: 10.1177/0271678X221089074
Smith, M. L., von Hanwehr, R. & Siesjö, B. K. Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J. Cereb. Blood Flow Metab. 6, 574–583 (1986).
pubmed: 3760041
doi: 10.1038/jcbfm.1986.104
Kawabata, Y. Effect of tris-hydroxymethyl-aminomethane ib arterial blood, brain and cerebrospinal fluid acidosis after total cerebral ischemia in dogs. Kawasaki Med. J. 19, 25–35 (1993).
Choi, I. SLC4A transporters. Curr. Top. Membr 70, 77–103 (2012).
pubmed: 23177984
pmcid: 4768801
doi: 10.1016/B978-0-12-394316-3.00003-X
Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev. 83, 1183–1221 (2003).
pubmed: 14506304
doi: 10.1152/physrev.00010.2003
Martha, S. R. et al. Translational evaluation of acid/base and electrolyte alterations in rodent model of focal ischemia. J. Stroke Cerebrovasc. Dis. 27, 2746–2754 (2018).
pubmed: 30068479
pmcid: 6139269
doi: 10.1016/j.jstrokecerebrovasdis.2018.05.045
Kumar, G. et al. Changes in electrolyte concentrations alter the impedance during ischemia-reperfusion injury in rat brain. Physiol. Meas. 40, 105004 (2019).
pubmed: 31553963
doi: 10.1088/1361-6579/ab47ee
Zhang, S. et al. Temporal alterations in pericytes at the acute phase of ischemia/reperfusion in the mouse brain. Neural Regen. Res. 17, 2247–2252 (2022).
pubmed: 35259845
pmcid: 9083170
doi: 10.4103/1673-5374.336876
Korte, N. et al. The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia. J. Clin. Invest. 132, e154118 (2022).
Kloner, R. A., King, K. S. & Harrington, M. G. No-reflow phenomenon in the heart and brain. Am. J. Physiol. Heart Circ. Physiol. 315, H550–H562 (2018).
pubmed: 29882685
doi: 10.1152/ajpheart.00183.2018
Wei, T. T. et al. Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell 185, 1676–1693.e23 (2022).
pubmed: 35489334
pmcid: 9400797
doi: 10.1016/j.cell.2022.04.005
Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).
pubmed: 1660837
doi: 10.1016/0378-1119(91)90434-D
Wu, Y., Kawate, H., Ohnaka, K., Nawata, H. & Takayanagi, R. Nuclear compartmentalization of N-CoR and its interactions with steroid receptors. Mol. Cell. Biol. 26, 6633–6655 (2006).
pubmed: 16914745
pmcid: 1592818
doi: 10.1128/MCB.01534-05
Takasaki, J. et al. A novel Galphaq/11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 (2004).
pubmed: 15339913
doi: 10.1074/jbc.M408846200
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLOS Biol 8, e1000412 (2010).
pubmed: 20613859
pmcid: 2893951
doi: 10.1371/journal.pbio.1000412
Mizuno-Iijima, S. et al. Efficient production of large deletion and gene fragment knock-in mice mediated by genome editing with Cas9-mouse Cdt1 in mouse zygotes. Methods 191, 23–31 (2021).
pubmed: 32334080
doi: 10.1016/j.ymeth.2020.04.007
Ohkura, M. et al. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One 7, e51286 (2012).
pubmed: 23240011
pmcid: 3519846
doi: 10.1371/journal.pone.0051286
Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).
pubmed: 20944627
doi: 10.1038/nature09522
Sancho, M. et al. Adenosine signaling activates ATP-sensitive K+ channels in endothelial cells and pericytes in CNS capillaries. Sci. Signal. 15, eabl5405 (2022).
pubmed: 35349300
pmcid: 9623876
doi: 10.1126/scisignal.abl5405
Nagasawa, H. & Kogure, K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20, 1037–1043 (1989).
pubmed: 2756535
doi: 10.1161/01.STR.20.8.1037
Chen, J. et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011 (2001).
pubmed: 11283404
doi: 10.1161/01.STR.32.4.1005
Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986).
pubmed: 21869365
doi: 10.1109/TPAMI.1986.4767851
Jo-Watanabe, A. et al. Bicarbonate signalling via GPCR regulates ischaemia-reperfusion injury. figshare. Dataset. https://doi.org/10.6084/m9.figshare.24431842 (2023).