Bicarbonate signalling via G protein-coupled receptor regulates ischaemia-reperfusion injury.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 Feb 2024
Historique:
received: 21 01 2023
accepted: 26 01 2024
medline: 28 2 2024
pubmed: 28 2 2024
entrez: 27 2 2024
Statut: epublish

Résumé

Homoeostatic regulation of the acid-base balance is essential for cellular functional integrity. However, little is known about the molecular mechanism through which the acid-base balance regulates cellular responses. Here, we report that bicarbonate ions activate a G protein-coupled receptor (GPCR), i.e., GPR30, which leads to G

Identifiants

pubmed: 38413581
doi: 10.1038/s41467-024-45579-3
pii: 10.1038/s41467-024-45579-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1530

Subventions

Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP18K15051 and 20K16148
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP20gm6210026

Informations de copyright

© 2024. The Author(s).

Références

Brinkman, J. E. & Sharma, S. Physiology, metabolic alkalosis. (StatPearls Publishing, 2022).
Behrendorff, N., Floetenmeyer, M., Schwiening, C. & Thorn, P. Protons released during pancreatic acinar cell secretion acidify the lumen and contribute to pancreatitis in mice. Gastroenterology 139, 1711–1720 (2010).
pubmed: 20691184 doi: 10.1053/j.gastro.2010.07.051
Funato, Y. et al. The oncogenic PRL protein causes acid addiction of cells by stimulating lysosomal exocytosis. Dev. Cell 55, 387–397(2020).
pubmed: 32918875 doi: 10.1016/j.devcel.2020.08.009
Inserte, J. et al. High-fat diet improves tolerance to myocardial ischemia by delaying normalization of intracellular PH at reperfusion. J. Mol. Cell. Cardiol. 133, 164–173 (2019).
pubmed: 31194987 doi: 10.1016/j.yjmcc.2019.06.001
Kelmanson, I. V. et al. In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biol 48, 102178 (2021).
pubmed: 34773835 pmcid: 8600061 doi: 10.1016/j.redox.2021.102178
Osei-Owusu, J. et al. Molecular determinants of pH sensing in the proton-activated chloride channel. Proc. Natl Acad. Sci. USA. 119, e2200727119 (2022).
pubmed: 35878032 pmcid: 9351481 doi: 10.1073/pnas.2200727119
Ludwig, M. G. et al. Proton-sensing G-protein-coupled receptors. Nature 425, 93–98 (2003).
pubmed: 12955148 doi: 10.1038/nature01905
Murakami, N., Yokomizo, T., Okuno, T. & Shimizu, T. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J. Biol. Chem. 279, 42484–42491 (2004).
pubmed: 15280385 doi: 10.1074/jbc.M406561200
Wang, J. Q. et al. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J. Biol. Chem. 279, 45626–45633 (2004).
pubmed: 15326175 doi: 10.1074/jbc.M406966200
Imenez Silva, P. H., Camara, N. O. & Wagner, C. A. Role of proton-activated G protein-coupled receptors in pathophysiology. Am. J. Physiol. Cell Physiol. 323, C400–C414 (2022).
pubmed: 35759438 doi: 10.1152/ajpcell.00114.2022
Meigh, L. et al. CO
pubmed: 24220509 pmcid: 3821526 doi: 10.7554/eLife.01213
Caldwell, H. G. et al. Arterial carbon dioxide and bicarbonate rather than pH regulate cerebral blood flow in the setting of acute experimental metabolic alkalosis. J. Physiol. 599, 1439–1457 (2021).
pubmed: 33404065 doi: 10.1113/JP280682
Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).
pubmed: 28957666 pmcid: 5657612 doi: 10.1016/j.neuron.2017.07.030
Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).
pubmed: 18984166 pmcid: 2590943 doi: 10.1016/j.cell.2008.08.040
Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).
pubmed: 29443965 doi: 10.1038/nature25739
He, L. et al. Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci. Data 5, 180160 (2018).
pubmed: 30129931 pmcid: 6103262 doi: 10.1038/sdata.2018.160
Revankar, C. M., Cimino, D. F., Sklar, L. A., Arterburn, J. B. & Prossnitz, E. R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307, 1625–1630 (2005).
pubmed: 15705806 doi: 10.1126/science.1106943
Thomas, P., Pang, Y., Filardo, E. J. & Dong, J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146, 624–632 (2005).
pubmed: 15539556 doi: 10.1210/en.2004-1064
Mårtensson, U. E. et al. Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology 150, 687–698 (2009).
pubmed: 18845638 doi: 10.1210/en.2008-0623
Ford, J. et al. GPR30 deficiency causes increased bone mass, mineralization, and growth plate proliferative activity in male mice. J. Bone Miner. Res. 26, 298–307 (2011).
pubmed: 20734455 doi: 10.1002/jbmr.209
Prossnitz, E. R. & Arterburn, J. B. International union of basic and clinical pharmacology. XCVII. G protein-coupled estrogen receptor and its pharmacologic modulators. Pharmacol. Rev 67, 505–540 (2015).
pubmed: 26023144 pmcid: 4485017 doi: 10.1124/pr.114.009712
Otto, C. et al. G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol. Endocrinology 149, 4846–4856 (2008).
pubmed: 18566127 doi: 10.1210/en.2008-0269
Tutzauer, J. et al. Ligand-independent G protein-coupled estrogen receptor/G protein-coupled receptor 30 activity: Lack of receptor-dependent effects of G-1 and 17β-estradiol. Mol. Pharmacol. 100, 271–282 (2021).
pubmed: 34330822 pmcid: 8626787 doi: 10.1124/molpharm.121.000259
Lamprecht, M. R. & Morrison, B. 3rd GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17β-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res 1563, 131–137 (2014).
pubmed: 24704272 doi: 10.1016/j.brainres.2014.03.037
Otto, C. et al. GPR30 does not mediate estrogenic responses in reproductive organs in mice. Biol. Reprod 80, 34–41 (2009).
pubmed: 18799753 doi: 10.1095/biolreprod.108.071175
Inoue, A. et al. TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9, 1021–1029 (2012).
pubmed: 22983457 doi: 10.1038/nmeth.2172
Kamel, K. S. & Halperin, M. L. Principles of acid–base physiology. In Fluid, Electrolyte and Acid-Base Physiology. 5th ed. (Elsevier, Kamel, S., Kamel, M. L. H., 2017).
Zhou, X. et al. Estrogen regulates Hippo signaling via GPER in breast cancer. J. Clin. Invest. 125, 2123–2135 (2015).
pubmed: 25893606 pmcid: 4463207 doi: 10.1172/JCI79573
Kooistra, A. J. et al. GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Res 49, D335–D343 (2021).
pubmed: 33270898 doi: 10.1093/nar/gkaa1080
Crouch, E. E. & Doetsch, F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat. Protoc. 13, 738–751 (2018).
pubmed: 29565899 doi: 10.1038/nprot.2017.158
Isensee, J. et al. Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology 150, 1722–1730 (2009).
pubmed: 19095739 doi: 10.1210/en.2008-1488
Hariharan, A. et al. The ion channel and GPCR toolkit of brain capillary pericytes. Front. Cell. Neurosci. 14, 601324 (2020).
pubmed: 33390906 pmcid: 7775489 doi: 10.3389/fncel.2020.601324
Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022).
pubmed: 35084939 pmcid: 8995178 doi: 10.1126/science.abi7377
Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).
pubmed: 19718040 doi: 10.1038/nm.2022
Zhu, W. et al. Sex difference in capillary reperfusion after transient middle cerebral artery occlusion in diabetic mice. Stroke 54, 364–373 (2023).
pubmed: 36689578 pmcid: 9883047 doi: 10.1161/STROKEAHA.122.040972
Shen, J. et al. PDGFR-β as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J. Cereb. Blood Flow Metab. 32, 353–367 (2012).
pubmed: 21952111 doi: 10.1038/jcbfm.2011.136
Ma, R. et al. Animal models of cerebral ischemia: a review. Biomed. Pharmacother. 131, 110686 (2020).
pubmed: 32937247 doi: 10.1016/j.biopha.2020.110686
Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006).
pubmed: 17036005 pmcid: 1761848 doi: 10.1038/nature05193
Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).
pubmed: 24670647 pmcid: 3976267 doi: 10.1038/nature13165
Queliconi, B. B. et al. Bicarbonate modulates oxidative and functional damage in ischemia-reperfusion. Free Radic. Biol. Med. 55, 46–53 (2013).
pubmed: 23195687 doi: 10.1016/j.freeradbiomed.2012.11.007
Queliconi, B. B., Kowaltowski, A. J. & Gottlieb, R. A. Bicarbonate increases ischemia-reperfusion damage by inhibiting mitophagy. PLOS ONE 11, e0167678 (2016).
pubmed: 27973540 pmcid: 5156406 doi: 10.1371/journal.pone.0167678
Chen, Y. et al. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289, 625–628 (2000).
pubmed: 10915626 doi: 10.1126/science.289.5479.625
Owman, C., Blay, P., Nilsson, C. & Lolait, S. J. Cloning of human cDNA encoding a novel heptahelix receptor expressed in Burkitt’s lymphoma and widely distributed in brain and peripheral tissues. Biochem. Biophys. Res. Commun. 228, 285–292 (1996).
pubmed: 8920907 doi: 10.1006/bbrc.1996.1654
Carmeci, C., Thompson, D. A., Ring, H. Z., Francke, U. & Weigel, R. J. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45, 607–617 (1997).
pubmed: 9367686 doi: 10.1006/geno.1997.4972
Filardo, E. J., Quinn, J. A., Bland, K. I. & Frackelton, A. R. Jr Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol 14, 1649–1660 (2000).
pubmed: 11043579 doi: 10.1210/mend.14.10.0532
Bautista, N. M. et al. New insights into the allosteric effects of CO2 and bicarbonate on crocodilian hemoglobin. J. Exp. Biol. 224, jeb242615 (2021).
Zha, X. M., Xiong, Z. G. & Simon, R. P. pH and proton-sensitive receptors in brain ischemia. J. Cereb. Blood Flow Metab. 42, 1349–1363 (2022).
pubmed: 35301897 pmcid: 9274858 doi: 10.1177/0271678X221089074
Smith, M. L., von Hanwehr, R. & Siesjö, B. K. Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J. Cereb. Blood Flow Metab. 6, 574–583 (1986).
pubmed: 3760041 doi: 10.1038/jcbfm.1986.104
Kawabata, Y. Effect of tris-hydroxymethyl-aminomethane ib arterial blood, brain and cerebrospinal fluid acidosis after total cerebral ischemia in dogs. Kawasaki Med. J. 19, 25–35 (1993).
Choi, I. SLC4A transporters. Curr. Top. Membr 70, 77–103 (2012).
pubmed: 23177984 pmcid: 4768801 doi: 10.1016/B978-0-12-394316-3.00003-X
Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev. 83, 1183–1221 (2003).
pubmed: 14506304 doi: 10.1152/physrev.00010.2003
Martha, S. R. et al. Translational evaluation of acid/base and electrolyte alterations in rodent model of focal ischemia. J. Stroke Cerebrovasc. Dis. 27, 2746–2754 (2018).
pubmed: 30068479 pmcid: 6139269 doi: 10.1016/j.jstrokecerebrovasdis.2018.05.045
Kumar, G. et al. Changes in electrolyte concentrations alter the impedance during ischemia-reperfusion injury in rat brain. Physiol. Meas. 40, 105004 (2019).
pubmed: 31553963 doi: 10.1088/1361-6579/ab47ee
Zhang, S. et al. Temporal alterations in pericytes at the acute phase of ischemia/reperfusion in the mouse brain. Neural Regen. Res. 17, 2247–2252 (2022).
pubmed: 35259845 pmcid: 9083170 doi: 10.4103/1673-5374.336876
Korte, N. et al. The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia. J. Clin. Invest. 132, e154118 (2022).
Kloner, R. A., King, K. S. & Harrington, M. G. No-reflow phenomenon in the heart and brain. Am. J. Physiol. Heart Circ. Physiol. 315, H550–H562 (2018).
pubmed: 29882685 doi: 10.1152/ajpheart.00183.2018
Wei, T. T. et al. Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell 185, 1676–1693.e23 (2022).
pubmed: 35489334 pmcid: 9400797 doi: 10.1016/j.cell.2022.04.005
Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).
pubmed: 1660837 doi: 10.1016/0378-1119(91)90434-D
Wu, Y., Kawate, H., Ohnaka, K., Nawata, H. & Takayanagi, R. Nuclear compartmentalization of N-CoR and its interactions with steroid receptors. Mol. Cell. Biol. 26, 6633–6655 (2006).
pubmed: 16914745 pmcid: 1592818 doi: 10.1128/MCB.01534-05
Takasaki, J. et al. A novel Galphaq/11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 (2004).
pubmed: 15339913 doi: 10.1074/jbc.M408846200
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLOS Biol 8, e1000412 (2010).
pubmed: 20613859 pmcid: 2893951 doi: 10.1371/journal.pbio.1000412
Mizuno-Iijima, S. et al. Efficient production of large deletion and gene fragment knock-in mice mediated by genome editing with Cas9-mouse Cdt1 in mouse zygotes. Methods 191, 23–31 (2021).
pubmed: 32334080 doi: 10.1016/j.ymeth.2020.04.007
Ohkura, M. et al. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One 7, e51286 (2012).
pubmed: 23240011 pmcid: 3519846 doi: 10.1371/journal.pone.0051286
Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010).
pubmed: 20944627 doi: 10.1038/nature09522
Sancho, M. et al. Adenosine signaling activates ATP-sensitive K+ channels in endothelial cells and pericytes in CNS capillaries. Sci. Signal. 15, eabl5405 (2022).
pubmed: 35349300 pmcid: 9623876 doi: 10.1126/scisignal.abl5405
Nagasawa, H. & Kogure, K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20, 1037–1043 (1989).
pubmed: 2756535 doi: 10.1161/01.STR.20.8.1037
Chen, J. et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011 (2001).
pubmed: 11283404 doi: 10.1161/01.STR.32.4.1005
Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986).
pubmed: 21869365 doi: 10.1109/TPAMI.1986.4767851
Jo-Watanabe, A. et al. Bicarbonate signalling via GPCR regulates ischaemia-reperfusion injury. figshare. Dataset. https://doi.org/10.6084/m9.figshare.24431842 (2023).

Auteurs

Airi Jo-Watanabe (A)

Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan. awatanabe-tky@umin.ac.jp.
AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan. awatanabe-tky@umin.ac.jp.

Toshiki Inaba (T)

Department of Neurology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.

Takahiro Osada (T)

Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.

Ryota Hashimoto (R)

Laboratory of Cell Biology, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.

Tomohiro Nishizawa (T)

Graduate School of Medical Life Science, Yokohama City University, Kanagawa, 230-0045, Japan.

Toshiaki Okuno (T)

Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.

Sayoko Ihara (S)

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.

Kazushige Touhara (K)

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.

Nobutaka Hattori (N)

Department of Neurology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.

Masatsugu Oh-Hora (M)

Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
Laboratory of Cell Biology, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.

Osamu Nureki (O)

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.

Takehiko Yokomizo (T)

Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan. yokomizo-tky@umin.ac.jp.

Classifications MeSH