Neuronal dynamics direct cerebrospinal fluid perfusion and brain clearance.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Mar 2024
Mar 2024
Historique:
received:
16
02
2023
accepted:
23
01
2024
medline:
8
3
2024
pubmed:
29
2
2024
entrez:
28
2
2024
Statut:
ppublish
Résumé
The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow
Identifiants
pubmed: 38418877
doi: 10.1038/s41586-024-07108-6
pii: 10.1038/s41586-024-07108-6
doi:
Substances chimiques
Ions
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
157-164Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).
pubmed: 22896675
pmcid: 3551275
doi: 10.1126/scitranslmed.3003748
Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).
pubmed: 24136970
doi: 10.1126/science.1241224
Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).
pubmed: 29515192
doi: 10.1038/nrn.2018.19
Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998).
pubmed: 10195106
doi: 10.1038/236
Kaplan, L., Chow, B. W. & Gu, C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 21, 416–432 (2020).
pubmed: 32636528
pmcid: 8934575
doi: 10.1038/s41583-020-0322-2
Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).
pubmed: 32707093
pmcid: 7392116
doi: 10.1016/j.cell.2020.06.039
Hablitz, L. M. & Nedergaard, M. The glymphatic system. Curr. Biol. 31, R1371–R1375 (2021).
pubmed: 34699796
doi: 10.1016/j.cub.2021.08.026
Rasmussen, M. K., Mestre, H. & Nedergaard, M. Fluid transport in the brain. Physiol. Rev. 102, 1025–1151 (2022).
pubmed: 33949874
doi: 10.1152/physrev.00031.2020
Lei, Y., Han, H., Yuan, F., Javeed, A. & Zhao, Y. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog. Neurobiol. 157, 230–246 (2017).
pubmed: 26837044
doi: 10.1016/j.pneurobio.2015.12.007
Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).
pubmed: 31672896
pmcid: 7309589
doi: 10.1126/science.aax5440
Hablitz, L. M. et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 5, eaav5447 (2019).
pubmed: 30820460
pmcid: 6392807
doi: 10.1126/sciadv.aav5447
Jiang-Xie, L. F. et al. A common neuroendocrine substrate for diverse general anesthetics and sleep. Neuron 102, 1053–1065.e4 (2019).
pubmed: 31006556
pmcid: 6554048
doi: 10.1016/j.neuron.2019.03.033
Buzsaki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).
pubmed: 15114356
doi: 10.1038/nn1233
Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).
pubmed: 22595786
pmcid: 4907333
doi: 10.1038/nrn3241
Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765 (2017).
pubmed: 28231463
pmcid: 5325713
doi: 10.1016/j.neuron.2017.01.014
Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).
pubmed: 15218136
doi: 10.1126/science.1099745
Weber, F. & Dan, Y. Circuit-based interrogation of sleep control. Nature 538, 51–59 (2016).
pubmed: 27708309
doi: 10.1038/nature19773
Akeju, O. & Brown, E. N. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr. Opin. Neurobiol. 44, 178–185 (2017).
pubmed: 28544930
pmcid: 5520989
doi: 10.1016/j.conb.2017.04.011
Chauvette, S., Crochet, S., Volgushev, M. & Timofeev, I. Properties of slow oscillation during slow-wave sleep and anesthesia in cats. J. Neurosci. 31, 14998–15008 (2011).
pubmed: 22016533
pmcid: 3209581
doi: 10.1523/JNEUROSCI.2339-11.2011
Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science https://doi.org/10.1126/science.abf4588 (2021).
Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19, 4595–4608 (1999).
pubmed: 10341257
pmcid: 6782626
doi: 10.1523/JNEUROSCI.19-11-04595.1999
Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).
Magnus, C. J. et al. Ultrapotent chemogenetics for research and potential clinical applications. Science https://doi.org/10.1126/science.aav5282 (2019).
Luo, L. Principles of Neurobiology 2nd edn (Garland Science, 2020).
Turecek, J., Lehnert, B. P. & Ginty, D. D. The encoding of touch by somatotopically aligned dorsal column subdivisions. Nature 612, 310–315 (2022).
pubmed: 36418401
pmcid: 9729103
doi: 10.1038/s41586-022-05470-x
Eide, P. K., Vinje, V., Pripp, A. H., Mardal, K. A. & Ringstad, G. Sleep deprivation impairs molecular clearance from the human brain. Brain 144, 863–874 (2021).
pubmed: 33829232
doi: 10.1093/brain/awaa443
Miyawaki, H. & Diba, K. Regulation of hippocampal firing by network oscillations during sleep. Curr. Biol. 26, 893–902 (2016).
pubmed: 26972321
pmcid: 4821660
doi: 10.1016/j.cub.2016.02.024
Iliff, J. J. et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Invest. 123, 1299–1309 (2013).
pubmed: 23434588
pmcid: 3582150
doi: 10.1172/JCI67677
Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).
pubmed: 33020604
doi: 10.1038/s41587-020-0679-9
Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science https://doi.org/10.1126/science.aaw5202 (2019).
Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163–170 (2011).
pubmed: 22138641
pmcid: 4164695
doi: 10.1038/nn.2992
Harris, K. D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).
pubmed: 21829219
pmcid: 3324821
doi: 10.1038/nrn3084
Smith, A. J. & Verkman, A. S. The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J. 32, 543–551 (2018).
pubmed: 29101220
doi: 10.1096/fj.201700999
Hladky, S. B. & Barrand, M. A. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19, 9 (2022).
pubmed: 35115036
pmcid: 8815211
doi: 10.1186/s12987-021-00282-z
Pulido, R. S. et al. Neuronal activity regulates blood–brain barrier efflux transport through endothelial circadian genes. Neuron 108, 937–952.e7 (2020).
pubmed: 32979312
pmcid: 7736535
doi: 10.1016/j.neuron.2020.09.002
Holstein-Ronsbo, S. et al. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat. Neurosci. 26, 1042–1053 (2023).
pubmed: 37264158
pmcid: 10500159
doi: 10.1038/s41593-023-01327-2
Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004).
pubmed: 15295020
pmcid: 6729597
doi: 10.1523/JNEUROSCI.1318-04.2004
Lubenov, E. V. & Siapas, A. G. Hippocampal theta oscillations are travelling waves. Nature 459, 534–539 (2009).
pubmed: 19489117
doi: 10.1038/nature08010
Zhang, H. & Jacobs, J. Traveling theta waves in the human hippocampus. J. Neurosci. 35, 12477–12487 (2015).
pubmed: 26354915
pmcid: 4563037
doi: 10.1523/JNEUROSCI.5102-14.2015
Mestre, H. et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife https://doi.org/10.7554/eLife.40070 (2018).
Smith, A. J., Yao, X., Dix, J. A., Jin, B. J. & Verkman, A. S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife https://doi.org/10.7554/eLife.27679 (2017).
Pla, V. et al. A real-time in vivo clearance assay for quantification of glymphatic efflux. Cell Rep. 40, 111320 (2022).
pubmed: 36103828
doi: 10.1016/j.celrep.2022.111320
Tononi, G. & Edelman, G. M. Consciousness and complexity. Science 282, 1846–1851 (1998).
pubmed: 9836628
doi: 10.1126/science.282.5395.1846
Shein-Idelson, M., Ondracek, J. M., Liaw, H. P., Reiter, S. & Laurent, G. Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science 352, 590–595 (2016).
pubmed: 27126045
doi: 10.1126/science.aaf3621
Yap, M. H. W. et al. Oscillatory brain activity in spontaneous and induced sleep stages in flies. Nat. Commun. 8, 1815 (2017).
pubmed: 29180766
pmcid: 5704022
doi: 10.1038/s41467-017-02024-y
Leung, L. C. et al. Neural signatures of sleep in zebrafish. Nature 571, 198–204 (2019).
pubmed: 31292557
pmcid: 7081717
doi: 10.1038/s41586-019-1336-7
Iaccarino, H. F. et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540, 230–235 (2016).
pubmed: 27929004
pmcid: 5656389
doi: 10.1038/nature20587
Martorell, A. J. et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell 177, 256–271.e22 (2019).
pubmed: 30879788
pmcid: 6774262
doi: 10.1016/j.cell.2019.02.014
Luo, L. Architectures of neuronal circuits. Science 373, eabg7285 (2021).
pubmed: 34516844
pmcid: 8916593
doi: 10.1126/science.abg7285
Drieu, A. et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).
pubmed: 36352225
pmcid: 9899827
doi: 10.1038/s41586-022-05397-3
Franklin, K. B. J. & Paxinos, G. The mouse brain in stereotaxic coordinates 4th edn (Academic Press, 2013).
Ayloo, S. et al. Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood–CNS barrier. Neuron 110, 1641–1655.e6 (2022).
pubmed: 35294899
pmcid: 9119930
doi: 10.1016/j.neuron.2022.02.017
Araragi, N., Alenina, N. & Bader, M. Carbon-mixed dental cement for fixing fiber optic ferrules prevents visually triggered locomotive enhancement in mice upon optogenetic stimulation. Heliyon 8, e08692 (2022).
pubmed: 35024491
doi: 10.1016/j.heliyon.2021.e08692
Kass, R. E., Eden, U. T. & Brown, E. N. Analysis of Neural Data (Springer, 2014).
Kramer, M. A. & Eden, U. T. Case studies in neural data analysis: a guide for the practicing neuroscientist (The MIT Press, 2016).
Cohen, M. X. Analyzing neural time series data: theory and practice (The MIT Press, 2014).
Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).
pubmed: 26974951
pmcid: 4817237
doi: 10.1038/nn.4268
Prerau, M. J., Brown, R. E., Bianchi, M. T., Ellenbogen, J. M. & Purdon, P. L. Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiology 32, 60–92 (2017).
pubmed: 27927806
doi: 10.1152/physiol.00062.2015