Neuronal dynamics direct cerebrospinal fluid perfusion and brain clearance.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Mar 2024
Historique:
received: 16 02 2023
accepted: 23 01 2024
medline: 8 3 2024
pubmed: 29 2 2024
entrez: 28 2 2024
Statut: ppublish

Résumé

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow

Identifiants

pubmed: 38418877
doi: 10.1038/s41586-024-07108-6
pii: 10.1038/s41586-024-07108-6
doi:

Substances chimiques

Ions 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

157-164

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).
pubmed: 22896675 pmcid: 3551275 doi: 10.1126/scitranslmed.3003748
Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).
pubmed: 24136970 doi: 10.1126/science.1241224
Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).
pubmed: 29515192 doi: 10.1038/nrn.2018.19
Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998).
pubmed: 10195106 doi: 10.1038/236
Kaplan, L., Chow, B. W. & Gu, C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 21, 416–432 (2020).
pubmed: 32636528 pmcid: 8934575 doi: 10.1038/s41583-020-0322-2
Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).
pubmed: 32707093 pmcid: 7392116 doi: 10.1016/j.cell.2020.06.039
Hablitz, L. M. & Nedergaard, M. The glymphatic system. Curr. Biol. 31, R1371–R1375 (2021).
pubmed: 34699796 doi: 10.1016/j.cub.2021.08.026
Rasmussen, M. K., Mestre, H. & Nedergaard, M. Fluid transport in the brain. Physiol. Rev. 102, 1025–1151 (2022).
pubmed: 33949874 doi: 10.1152/physrev.00031.2020
Lei, Y., Han, H., Yuan, F., Javeed, A. & Zhao, Y. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog. Neurobiol. 157, 230–246 (2017).
pubmed: 26837044 doi: 10.1016/j.pneurobio.2015.12.007
Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).
pubmed: 31672896 pmcid: 7309589 doi: 10.1126/science.aax5440
Hablitz, L. M. et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 5, eaav5447 (2019).
pubmed: 30820460 pmcid: 6392807 doi: 10.1126/sciadv.aav5447
Jiang-Xie, L. F. et al. A common neuroendocrine substrate for diverse general anesthetics and sleep. Neuron 102, 1053–1065.e4 (2019).
pubmed: 31006556 pmcid: 6554048 doi: 10.1016/j.neuron.2019.03.033
Buzsaki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).
pubmed: 15114356 doi: 10.1038/nn1233
Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).
pubmed: 22595786 pmcid: 4907333 doi: 10.1038/nrn3241
Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765 (2017).
pubmed: 28231463 pmcid: 5325713 doi: 10.1016/j.neuron.2017.01.014
Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).
pubmed: 15218136 doi: 10.1126/science.1099745
Weber, F. & Dan, Y. Circuit-based interrogation of sleep control. Nature 538, 51–59 (2016).
pubmed: 27708309 doi: 10.1038/nature19773
Akeju, O. & Brown, E. N. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr. Opin. Neurobiol. 44, 178–185 (2017).
pubmed: 28544930 pmcid: 5520989 doi: 10.1016/j.conb.2017.04.011
Chauvette, S., Crochet, S., Volgushev, M. & Timofeev, I. Properties of slow oscillation during slow-wave sleep and anesthesia in cats. J. Neurosci. 31, 14998–15008 (2011).
pubmed: 22016533 pmcid: 3209581 doi: 10.1523/JNEUROSCI.2339-11.2011
Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science https://doi.org/10.1126/science.abf4588 (2021).
Destexhe, A., Contreras, D. & Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19, 4595–4608 (1999).
pubmed: 10341257 pmcid: 6782626 doi: 10.1523/JNEUROSCI.19-11-04595.1999
Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).
Magnus, C. J. et al. Ultrapotent chemogenetics for research and potential clinical applications. Science https://doi.org/10.1126/science.aav5282 (2019).
Luo, L. Principles of Neurobiology 2nd edn (Garland Science, 2020).
Turecek, J., Lehnert, B. P. & Ginty, D. D. The encoding of touch by somatotopically aligned dorsal column subdivisions. Nature 612, 310–315 (2022).
pubmed: 36418401 pmcid: 9729103 doi: 10.1038/s41586-022-05470-x
Eide, P. K., Vinje, V., Pripp, A. H., Mardal, K. A. & Ringstad, G. Sleep deprivation impairs molecular clearance from the human brain. Brain 144, 863–874 (2021).
pubmed: 33829232 doi: 10.1093/brain/awaa443
Miyawaki, H. & Diba, K. Regulation of hippocampal firing by network oscillations during sleep. Curr. Biol. 26, 893–902 (2016).
pubmed: 26972321 pmcid: 4821660 doi: 10.1016/j.cub.2016.02.024
Iliff, J. J. et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Invest. 123, 1299–1309 (2013).
pubmed: 23434588 pmcid: 3582150 doi: 10.1172/JCI67677
Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).
pubmed: 33020604 doi: 10.1038/s41587-020-0679-9
Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science https://doi.org/10.1126/science.aaw5202 (2019).
Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163–170 (2011).
pubmed: 22138641 pmcid: 4164695 doi: 10.1038/nn.2992
Harris, K. D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).
pubmed: 21829219 pmcid: 3324821 doi: 10.1038/nrn3084
Smith, A. J. & Verkman, A. S. The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J. 32, 543–551 (2018).
pubmed: 29101220 doi: 10.1096/fj.201700999
Hladky, S. B. & Barrand, M. A. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19, 9 (2022).
pubmed: 35115036 pmcid: 8815211 doi: 10.1186/s12987-021-00282-z
Pulido, R. S. et al. Neuronal activity regulates blood–brain barrier efflux transport through endothelial circadian genes. Neuron 108, 937–952.e7 (2020).
pubmed: 32979312 pmcid: 7736535 doi: 10.1016/j.neuron.2020.09.002
Holstein-Ronsbo, S. et al. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat. Neurosci. 26, 1042–1053 (2023).
pubmed: 37264158 pmcid: 10500159 doi: 10.1038/s41593-023-01327-2
Massimini, M., Huber, R., Ferrarelli, F., Hill, S. & Tononi, G. The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004).
pubmed: 15295020 pmcid: 6729597 doi: 10.1523/JNEUROSCI.1318-04.2004
Lubenov, E. V. & Siapas, A. G. Hippocampal theta oscillations are travelling waves. Nature 459, 534–539 (2009).
pubmed: 19489117 doi: 10.1038/nature08010
Zhang, H. & Jacobs, J. Traveling theta waves in the human hippocampus. J. Neurosci. 35, 12477–12487 (2015).
pubmed: 26354915 pmcid: 4563037 doi: 10.1523/JNEUROSCI.5102-14.2015
Mestre, H. et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife https://doi.org/10.7554/eLife.40070 (2018).
Smith, A. J., Yao, X., Dix, J. A., Jin, B. J. & Verkman, A. S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife https://doi.org/10.7554/eLife.27679 (2017).
Pla, V. et al. A real-time in vivo clearance assay for quantification of glymphatic efflux. Cell Rep. 40, 111320 (2022).
pubmed: 36103828 doi: 10.1016/j.celrep.2022.111320
Tononi, G. & Edelman, G. M. Consciousness and complexity. Science 282, 1846–1851 (1998).
pubmed: 9836628 doi: 10.1126/science.282.5395.1846
Shein-Idelson, M., Ondracek, J. M., Liaw, H. P., Reiter, S. & Laurent, G. Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science 352, 590–595 (2016).
pubmed: 27126045 doi: 10.1126/science.aaf3621
Yap, M. H. W. et al. Oscillatory brain activity in spontaneous and induced sleep stages in flies. Nat. Commun. 8, 1815 (2017).
pubmed: 29180766 pmcid: 5704022 doi: 10.1038/s41467-017-02024-y
Leung, L. C. et al. Neural signatures of sleep in zebrafish. Nature 571, 198–204 (2019).
pubmed: 31292557 pmcid: 7081717 doi: 10.1038/s41586-019-1336-7
Iaccarino, H. F. et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540, 230–235 (2016).
pubmed: 27929004 pmcid: 5656389 doi: 10.1038/nature20587
Martorell, A. J. et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell 177, 256–271.e22 (2019).
pubmed: 30879788 pmcid: 6774262 doi: 10.1016/j.cell.2019.02.014
Luo, L. Architectures of neuronal circuits. Science 373, eabg7285 (2021).
pubmed: 34516844 pmcid: 8916593 doi: 10.1126/science.abg7285
Drieu, A. et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).
pubmed: 36352225 pmcid: 9899827 doi: 10.1038/s41586-022-05397-3
Franklin, K. B. J. & Paxinos, G. The mouse brain in stereotaxic coordinates 4th edn (Academic Press, 2013).
Ayloo, S. et al. Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood–CNS barrier. Neuron 110, 1641–1655.e6 (2022).
pubmed: 35294899 pmcid: 9119930 doi: 10.1016/j.neuron.2022.02.017
Araragi, N., Alenina, N. & Bader, M. Carbon-mixed dental cement for fixing fiber optic ferrules prevents visually triggered locomotive enhancement in mice upon optogenetic stimulation. Heliyon 8, e08692 (2022).
pubmed: 35024491 doi: 10.1016/j.heliyon.2021.e08692
Kass, R. E., Eden, U. T. & Brown, E. N. Analysis of Neural Data (Springer, 2014).
Kramer, M. A. & Eden, U. T. Case studies in neural data analysis: a guide for the practicing neuroscientist (The MIT Press, 2016).
Cohen, M. X. Analyzing neural time series data: theory and practice (The MIT Press, 2014).
Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19, 634–641 (2016).
pubmed: 26974951 pmcid: 4817237 doi: 10.1038/nn.4268
Prerau, M. J., Brown, R. E., Bianchi, M. T., Ellenbogen, J. M. & Purdon, P. L. Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiology 32, 60–92 (2017).
pubmed: 27927806 doi: 10.1152/physiol.00062.2015

Auteurs

Li-Feng Jiang-Xie (LF)

Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA. li-feng@wustl.edu.
Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA. li-feng@wustl.edu.

Antoine Drieu (A)

Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA.
Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.

Kesshni Bhasiin (K)

Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA.
Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.

Daniel Quintero (D)

Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA.
Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.

Igor Smirnov (I)

Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA.
Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.

Jonathan Kipnis (J)

Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA. kipnis@wustl.edu.
Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA. kipnis@wustl.edu.

Articles similaires

1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Cerebrospinal Fluid Animals Liver Glymphatic System Spinal Cord
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Animals Optogenetics Visual Cortex Neurons Mice

Classifications MeSH