Specificity, synergy, and mechanisms of splice-modifying drugs.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
29 Feb 2024
Historique:
received: 22 02 2023
accepted: 10 02 2024
medline: 1 3 2024
pubmed: 1 3 2024
entrez: 29 2 2024
Statut: epublish

Résumé

Drugs that target pre-mRNA splicing hold great therapeutic potential, but the quantitative understanding of how these drugs work is limited. Here we introduce mechanistically interpretable quantitative models for the sequence-specific and concentration-dependent behavior of splice-modifying drugs. Using massively parallel splicing assays, RNA-seq experiments, and precision dose-response curves, we obtain quantitative models for two small-molecule drugs, risdiplam and branaplam, developed for treating spinal muscular atrophy. The results quantitatively characterize the specificities of risdiplam and branaplam for 5' splice site sequences, suggest that branaplam recognizes 5' splice sites via two distinct interaction modes, and contradict the prevailing two-site hypothesis for risdiplam activity at SMN2 exon 7. The results also show that anomalous single-drug cooperativity, as well as multi-drug synergy, are widespread among small-molecule drugs and antisense-oligonucleotide drugs that promote exon inclusion. Our quantitative models thus clarify the mechanisms of existing treatments and provide a basis for the rational development of new therapies.

Identifiants

pubmed: 38424098
doi: 10.1038/s41467-024-46090-5
pii: 10.1038/s41467-024-46090-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1880

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM133777
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG011787
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA045508
Pays : United States
Organisme : ODCDC CDC HHS
ID : S10 OD020122
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Tang, Z., Zhao, J., Pearson, Z. J., Boskovic, Z. V. & Wang, J. RNA-targeting splicing modifiers: drug development and screening assays. Molecules 26, 2263 (2021).
pubmed: 33919699 pmcid: 8070285 doi: 10.3390/molecules26082263
Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).
pubmed: 29977051 pmcid: 6420209 doi: 10.1038/nrd.2018.93
Daguenet, E., Dujardin, G. & Valcárcel, J. The pathogenicity of splicing defects: mechanistic insights into pre‐mRNA processing inform novel therapeutic approaches. EMBO Rep. 16, 1640–1655 (2015).
pubmed: 26566663 pmcid: 4693517 doi: 10.15252/embr.201541116
Wu, P. Inhibition of RNA-binding proteins with small molecules. Nat. Rev. Chem. 4, 441–458 (2020).
pubmed: 37127961 doi: 10.1038/s41570-020-0201-4
Scotti, M. M. & Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet. 17, 19–32 (2015).
pubmed: 26593421 pmcid: 5993438 doi: 10.1038/nrg.2015.3
Ravi, B., Chan-Cortés, M. H. & Sumner, C. J. Gene-targeting therapeutics for neurological disease: lessons learned from spinal muscular atrophy. Annu. Rev. Med. 72, 1–14 (2021).
pubmed: 33502897 doi: 10.1146/annurev-med-070119-115459
Levin, A. A. Treating disease at the RNA level with oligonucleotides. New Engl. J. Med. 380, 57–70 (2019).
pubmed: 30601736 doi: 10.1056/NEJMra1705346
Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453 (2021).
pubmed: 33762737 doi: 10.1038/s41573-021-00162-z
Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab. 27, 714–739 (2018).
pubmed: 29617640 doi: 10.1016/j.cmet.2018.03.004
Barraza, S. J., Bhattacharyya, A., Trotta, C. R. & Woll, M. G. Targeting strategies for modulating pre-mRNA splicing with small molecules: recent advances. Drug Discov. Today 28, 103431 (2022).
pubmed: 36356786 doi: 10.1016/j.drudis.2022.103431
Hua, Y., Vickers, T. A., Okunola, H. L., Bennett, C. F. & Krainer, A. R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008).
pubmed: 18371932 pmcid: 2427210 doi: 10.1016/j.ajhg.2008.01.014
Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388, 3017–3026 (2016).
pubmed: 27939059 doi: 10.1016/S0140-6736(16)31408-8
Bennett, C. F., Krainer, A. R. & Cleveland, D. W. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu. Rev. Neurosci. 42, 385–406 (2019).
pubmed: 31283897 pmcid: 7427431 doi: 10.1146/annurev-neuro-070918-050501
Naryshkin, N. A. et al. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).
pubmed: 25104390 doi: 10.1126/science.1250127
Ratni, H. et al. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61, 6501–6517 (2018).
pubmed: 30044619 doi: 10.1021/acs.jmedchem.8b00741
Dhillon, S. Risdiplam: first approval. Drugs 80, 1853–1858 (2020).
pubmed: 33044711 doi: 10.1007/s40265-020-01410-z
Palacino, J. et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat. Chem. Biol. 11, 511–517 (2015).
pubmed: 26030728 doi: 10.1038/nchembio.1837
Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8, 1476 (2017).
pubmed: 29133793 pmcid: 5684323 doi: 10.1038/s41467-017-01559-4
Cheung, A. K. et al. Discovery of small molecule splicing modulators of survival motor neuron-2 (SMN2) for the treatment of spinal muscular atrophy. J. Med. Chem. 61, 11021–11036 (2018).
pubmed: 30407821 doi: 10.1021/acs.jmedchem.8b01291
Campagne, S. et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat. Chem. Biol. 1, 919–8 (2019).
Wang, J., Schultz, P. G. & Johnson, K. A. Mechanistic studies of a small-molecule modulator of SMN2 splicing. Proc. Natl Acad. Sci. USA 115, 201800260 (2018).
Ratni, H., Scalco, R. S. & Stephan, A. H. Risdiplam, the first approved small molecule splicing modifier drug as a blueprint for future transformative medicines. ACS Med. Chem. Lett. 12, 874–877 (2021).
pubmed: 34141064 pmcid: 8201486 doi: 10.1021/acsmedchemlett.0c00659
Tang, Z. et al. Recognition of single-stranded nucleic acids by small-molecule splicing modulators. Nucleic Acids Res. 49, 7870–7883 (2021).
pubmed: 34283224 pmcid: 8373063 doi: 10.1093/nar/gkab602
Singh, R. N., Ottesen, E. W. & Singh, N. N. The first orally deliverable small molecule for the treatment of spinal muscular atrophy. Neurosci. Insights 15, 1–11 (2020).
doi: 10.1177/2633105520973985
Monteys, A. M. et al. Regulated control of gene therapies by drug-induced splicing. Nature 596, 291–295 (2021).
pubmed: 34321659 pmcid: 8966400 doi: 10.1038/s41586-021-03770-2
Costales, M. G., Childs-Disney, J. L., Haniff, H. S. & Disney, M. D. How we think about targeting RNA with small molecules. J. Med. Chem. 63, 8880–8900 (2020).
pubmed: 32212706 pmcid: 7486258 doi: 10.1021/acs.jmedchem.9b01927
Ando, S. et al. Discovery of a CNS penetrant small molecule SMN2 splicing modulator with improved tolerability for spinal muscular atrophy. Sci. Rep. 10, 17472 (2020).
pubmed: 33060681 pmcid: 7562719 doi: 10.1038/s41598-020-74346-9
Mercuri, E., Sumner, C. J., Muntoni, F., Darras, B. T. & Finkel, R. S. Spinal muscular atrophy. Nat. Rev. Dis. Primers 8, 52 (2022).
pubmed: 35927425 doi: 10.1038/s41572-022-00380-8
Donlic, A. & Hargrove, A. E. Targeting RNA in mammalian systems with small molecules. Wiley Interdiscip Rev RNA 9, e1477 (2018).
pubmed: 29726113 pmcid: 6002909 doi: 10.1002/wrna.1477
Vincent, F., et al. Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat. Rev. Drug Discov. 21, 1–16 (2022).
Ottesen, E. W., et al. Diverse targets of SMN2-directed splicing-modulating small molecule therapeutics for spinal muscular atrophy. Nucleic Acids Res. 51, 5948–5980 (2023).
Johnson, K. A. & Goody, R. S. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50, 8264–8269 (2011).
pubmed: 21888353 doi: 10.1021/bi201284u
Gesztelyi, R. et al. The Hill equation and the origin of quantitative pharmacology. Arch. Hist. Exact. Sci. 66, 427–438 (2012).
doi: 10.1007/s00407-012-0098-5
Segel, I. H. Enzyme Kinetics. (Wiley-Interscience, 1975).
Baeza-Centurion, P., Miñana, B., Schmiedel, J. M., Valcárcel, J. & Lehner, B. Combinatorial genetics reveals a scaling law for the effects of mutations on splicing. Cell 176, 549–563.e23 (2019).
pubmed: 30661752 doi: 10.1016/j.cell.2018.12.010
Wong, M. S., Kinney, J. B. & Krainer, A. R. Quantitative activity profile and context dependence of all human 5’ splice sites. Mol. Cell 71, 1012–1026.e3 (2018).
pubmed: 30174293 pmcid: 6179149 doi: 10.1016/j.molcel.2018.07.033
Kinney, J. B. & McCandlish, D. M. Massively parallel assays and quantitative sequence-function relationships. Annu. Rev. Genom. Hum. G. 20, 99–127 (2019).
doi: 10.1146/annurev-genom-083118-014845
Shea, M. A. & Ackers, G. K. The OR control system of bacteriophage lambda: a physical-chemical model for gene regulation. J. Mol. Biol. 181, 211–230 (1985).
pubmed: 3157005 doi: 10.1016/0022-2836(85)90086-5
Bintu, L. et al. Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev. 15, 116–124 (2005).
pubmed: 15797194 pmcid: 3482385 doi: 10.1016/j.gde.2005.02.007
Kuhlman, T., Zhang, Z., Saier, M. H. & Hwa, T. Combinatorial transcriptional control of the lactose operon of Escherichia coli. Proc. Natl Acad. Sci. USA 104, 6043–6048 (2007).
pubmed: 17376875 pmcid: 1851613 doi: 10.1073/pnas.0606717104
Kinney, J. B., Murugan, A., Callan, C. G. & Cox, E. C. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc. Natl Acad. Sci. USA 107, 9158–9163 (2010).
pubmed: 20439748 pmcid: 2889059 doi: 10.1073/pnas.1004290107
Phillips, R., Kondev, J., Theriot, J. & Garcia, H. Physical Biology of the Cell. (Garland Science, 2012).
Wong, F. & Gunawardena, J. Gene regulation in and out of equilibrium. Annu. Rev. Biophys. 49, 199–226 (2020).
pubmed: 32375018 doi: 10.1146/annurev-biophys-121219-081542
Jarmoskaite, I. et al. A quantitative and predictive model for RNA binding by human pumilio proteins. Mol. Cell 74, 966–981.e18 (2019).
pubmed: 31078383 pmcid: 6645366 doi: 10.1016/j.molcel.2019.04.012
Cornish-Bowden, A. Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations. Nucleic Acids Res. 13, 3021–3030 (1985).
pubmed: 2582368 pmcid: 341218 doi: 10.1093/nar/13.9.3021
Shen, S. et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).
pubmed: 25480548 pmcid: 4280593 doi: 10.1073/pnas.1419161111
Forcier, T. L. et al. Measuring cis-regulatory energetics in living cells using allelic manifolds. eLife 7, e40618 (2018).
pubmed: 30570483 pmcid: 6301791 doi: 10.7554/eLife.40618
Keller, C. G. et al. An orally available, brain penetrant, small molecule lowers huntingtin levels by enhancing pseudoexon inclusion. Nat. Commun. 13, 1150 (2022).
pubmed: 35241644 pmcid: 8894458 doi: 10.1038/s41467-022-28653-6
Novartis. Novartis receives FDA fast track designation for branaplam (LMI070) for the treatment of Huntington’s disease. at https://www.novartis.com/news/novartis-receives-fda-fast-track-designation-branaplam-lmi070-treatment-huntingtons-disease (2021).
Bhattacharyya, A. et al. Small molecule splicing modifiers with systemic HTT-lowering activity. Nat. Commun. 12, 7299 (2021).
pubmed: 34911927 pmcid: 8674292 doi: 10.1038/s41467-021-27157-z
Krach, F. et al. An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington’s disease patient neurons. Nat. Commun. 13, 6797 (2022).
pubmed: 36357392 pmcid: 9649613 doi: 10.1038/s41467-022-34419-x
Berg, O. & von Hippel, P. Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. J. Mol. Biol. 193, 723–750 (1987).
pubmed: 3612791 doi: 10.1016/0022-2836(87)90354-8
Stormo, G. & Fields, D. Specificity, free energy and information content in protein-DNA interactions. Trends Biochem. Sci. 23, 109–113 (1998).
pubmed: 9581503 doi: 10.1016/S0968-0004(98)01187-6
Singh, N. N., Androphy, E. J. & Singh, R. N. In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. RNA 10, 1291–1305 (2004).
pubmed: 15272122 pmcid: 1370618 doi: 10.1261/rna.7580704
Hofmann, Y., Lorson, C. L., Stamm, S., Androphy, E. J. & Wirth, B. Htra2-β1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc. Natl Acad. Sci. USA 97, 9618–9623 (2000).
pubmed: 10931943 pmcid: 16914 doi: 10.1073/pnas.160181697
Wu, X. et al. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum. Mol. Genet. 26, 2768–2780 (2017).
pubmed: 28460014 pmcid: 5886194 doi: 10.1093/hmg/ddx166
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712 doi: 10.1016/S0022-2836(05)80360-2
Yoshida, M. et al. Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc. Natl Acad. Sci. USA 112, 2764–2769 (2015).
pubmed: 25675486 pmcid: 4352824 doi: 10.1073/pnas.1415525112
Sinha, R. et al. Antisense oligonucleotides correct the familial dysautonomia splicing defect in IKBKAP transgenic mice. Nucleic Acids Res. 46, 4833–4844 (2018).
pubmed: 29672717 pmcid: 6007753 doi: 10.1093/nar/gky249
Ajiro, M. et al. Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nat. Commun. 12, 4507 (2021).
pubmed: 34301951 pmcid: 8302731 doi: 10.1038/s41467-021-24705-5
Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47, 331–385 (1995).
pubmed: 7568331
Roca, X. et al. Widespread recognition of 5’ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Gene Dev. 26, 1098–1109 (2012).
pubmed: 22588721 pmcid: 3360564 doi: 10.1101/gad.190173.112
Roca, X. & Krainer, A. R. Recognition of atypical 5’ splice sites by shifted base-pairing to U1 snRNA. Nat. Struct. Mol. Biol. 16, 176–182 (2009).
pubmed: 19169258 pmcid: 2719486 doi: 10.1038/nsmb.1546
Marasco, L. E., et al. Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy. Cell 185, 2057–2070.e15 (2022).
Semlow, D. R. & Staley, J. P. Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem. Sci. 37, 263–273 (2012).
pubmed: 22564363 pmcid: 3735133 doi: 10.1016/j.tibs.2012.04.001
Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974).
pubmed: 4530290 pmcid: 434344 doi: 10.1073/pnas.71.10.4135
Ninio, J. Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975).
pubmed: 1182215 doi: 10.1016/S0300-9084(75)80139-8
Estrada, J., Wong, F., DePace, A. & Gunawardena, J. Information integration and energy expenditure in gene regulation. Cell 166, 234–244 (2016).
pubmed: 27368104 pmcid: 4930556 doi: 10.1016/j.cell.2016.06.012
Slaugenhaupt, S. A. et al. Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum. Mol. Genet. 13, 429–436 (2004).
pubmed: 14709595 doi: 10.1093/hmg/ddh046
Gao, D. et al. A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nat. Commun. 12, 3332 (2021).
pubmed: 34099697 pmcid: 8185002 doi: 10.1038/s41467-021-23663-2
Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in Python. Bioinformatics 36, 2272–2274 (2020).
pubmed: 31821414 doi: 10.1093/bioinformatics/btz921

Auteurs

Yuma Ishigami (Y)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.

Mandy S Wong (MS)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
Beam Therapeutics, Cambridge, MA, 02142, USA.

Carlos Martí-Gómez (C)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.

Andalus Ayaz (A)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.

Mahdi Kooshkbaghi (M)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
The Estée Lauder Companies, New York, NY, 10153, USA.

Sonya M Hanson (SM)

Flatiron Institute, New York, NY, 10010, USA.

David M McCandlish (DM)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.

Adrian R Krainer (AR)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA. krainer@cshl.edu.

Justin B Kinney (JB)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA. jkinney@cshl.edu.

Classifications MeSH