Semen proteome and transcriptome of the endangered black-footed ferret (Mustela nigripes) show association with the environment and fertility outcome.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
25 Mar 2024
Historique:
received: 17 09 2023
accepted: 14 03 2024
medline: 26 3 2024
pubmed: 26 3 2024
entrez: 26 3 2024
Statut: epublish

Résumé

The ex situ population of the endangered black-footed ferret (Mustela nigripes) has been experiencing declines in reproductive success over the past 30 years of human-managed care. A potential cause may be environmental-dependent inbreeding depression with diet being one of the contributing factors since ferrets are not fed their natural diet of prairie dogs. Here, we generated and analyzed semen proteome and transcriptome data from both wild and ex situ ferrets maintained on various diets. We identified 1757 proteins across all samples, with 149 proteins unique to the semen of wild ferrets and forming a ribosomal predicted protein-protein interaction cluster. Wild ferrets also differed from ex situ ferrets in their transcriptomic profile, showing enrichment in ribosomal RNA processing and potassium ion transport. Successful fertility outcomes documented for ex situ ferrets showed the strongest association with the semen transcriptome, with enrichment in genes involved in translation initiation and focal adhesion. Fertility also synergized with the effect of diet on differentially expressed transcriptomes, mainly affecting genes enriched in mitochondrial function. Our data and functional networks are important for understanding the causes and mechanisms of declining fertility in the ex situ ferret population and can be used as a resource for future conservation efforts.

Identifiants

pubmed: 38528039
doi: 10.1038/s41598-024-57096-w
pii: 10.1038/s41598-024-57096-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7063

Subventions

Organisme : Association of Zoos and Aquariums Saving Species From Extinction (SAFE)
ID : #19s-0004

Informations de copyright

© 2024. The Author(s).

Références

Miller, B., Reading, R. & Forrest, S. Prairie Night: Black-Footed Ferrets and the Recovery of Endangered Species (Press, 1996).
Ricketts, T. H. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, 1999).
Santymire, R. M. et al. Inbreeding causes decreased seminal quality affecting pregnancy and litter size in the endangered black-footed ferret. Anim. Conserv. 22, 331–340 (2019).
doi: 10.1111/acv.12466
Marinari, P. & Lynch, C. Population analysis & breeding and transfer plan for the black-footed ferret, Mustela nigripes. Species Surviv. Plan® (2021).
Brugh, V. M. & Lipshultz, L. I. Male factor infertility: Evaluation and management. Med. Clin. 88, 367–385 (2004).
Kumar, N. & Singh, A. K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 8, 191–196 (2015).
pubmed: 26752853 pmcid: 4691969 doi: 10.4103/0974-1208.170370
Pukazhenthi, B. S., Neubauer, K., Jewgenow, K., Howard, J. & Wildt, D. E. The impact and potential etiology of teratospermia in the domestic cat and its wild relatives. Theriogenology 66, 112–121 (2006).
pubmed: 16644003 doi: 10.1016/j.theriogenology.2006.03.020
Cheptou, P.-O. & Donohue, K. Environment-dependent inbreeding depression: Its ecological and evolutionary significance. New Phytol. 189, 395–407 (2011).
pubmed: 21091479 doi: 10.1111/j.1469-8137.2010.03541.x
US Fish and Wildlife Service Black-footed Ferret Managed Care Operations Manual (BFFMCOM). (2017).
Santymire, R. M., Lavin, S. R., Branvold-Faber, H., Kreeger, J. & Marinari, P. Effect of dietary vitamin E and prey supplementation on semen quality in male black-footed ferrets (Mustela nigripes). Theriogenology 84, 217–225 (2015).
pubmed: 25890779 doi: 10.1016/j.theriogenology.2015.03.007
Santymire, R. M. et al. Influence of vitamin E and carcass feeding supplementation on fecal glucocorticoid and androgen metabolites in male black-footed ferrets (Mustela nigripes). PLoS One 15, e0241085 (2020).
pubmed: 33095820 pmcid: 7584211 doi: 10.1371/journal.pone.0241085
Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).
pubmed: 28441057 doi: 10.1146/annurev-biochem-061516-045037
Tran, L. V., Malla, B. A., Kumar, S. & Tyagi, A. K. Polyunsaturated fatty acids in male ruminant reproduction—A review. Asian-Australas. J. Anim. Sci. 30, 622–637 (2016).
pubmed: 26954196 pmcid: 5411821 doi: 10.5713/ajas.15.1034
Agarwal, A. & Saleh, R. A. Role of oxidants in male infertility: Rationale, significance, and treatment. Urol. Clin. 29, 817–827 (2002).
doi: 10.1016/S0094-0143(02)00081-2
Zajitschek, F., Zajitschek, S. & Manier, M. High-protein paternal diet confers an advantage to sons in sperm competition. Biol. Lett. 13, 20160914 (2017).
pubmed: 28202685 pmcid: 5326516 doi: 10.1098/rsbl.2016.0914
Palmer, N. O. et al. SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reprod. Fertil. Dev. 23, 929–939 (2011).
pubmed: 21871212 doi: 10.1071/RD10326
Watkins, A. J. et al. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl. Acad. Sci. 115, 10064–10069 (2018).
pubmed: 30150380 pmcid: 6176621 doi: 10.1073/pnas.1806333115
Jodar, M., Soler-Ventura, A. & Oliva, R. Semen proteomics and male infertility. J. Proteomics 162, 125–134 (2017).
pubmed: 27576136 doi: 10.1016/j.jprot.2016.08.018
Hosken, D. J. & Hodgson, D. J. Why do sperm carry RNA? Relatedness, conflict, and control. Trends Ecol. Evol. 29, 451–455 (2014).
pubmed: 24916312 doi: 10.1016/j.tree.2014.05.006
Jodar, M. et al. The presence, role and clinical use of spermatozoal RNAs. Hum. Reprod. Update 19, 604–624 (2013).
pubmed: 23856356 pmcid: 3796946 doi: 10.1093/humupd/dmt031
Contri, A. et al. Effect of dietary antioxidant supplementation on fresh semen quality in stallion. Theriogenology 75, 1319–1326 (2011).
pubmed: 21295825 doi: 10.1016/j.theriogenology.2010.12.003
Yue, D., Yan, L., Luo, H., Xu, X. & Jin, X. Effect of Vitamin E supplementation on semen quality and the testicular cell membranal and mitochondrial antioxidant abilities in Aohan fine-wool sheep. Anim. Reprod. Sci. 118, 217–222 (2010).
pubmed: 19733455 doi: 10.1016/j.anireprosci.2009.08.004
Kliver, S. et al. Chromosome-length genome assembly and karyotype of the endangered black-footed ferret (Mustela nigripes). J. Hered. https://doi.org/10.1093/jhered/esad035 (2023).
doi: 10.1093/jhered/esad035 pubmed: 37249392 pmcid: 10848218
Amaral, A., Castillo, J., Ramalho-Santos, J. & Oliva, R. The combined human sperm proteome: Cellular pathways and implications for basic and clinical science. Hum. Reprod. Update 20, 40–62 (2014).
pubmed: 24082039 doi: 10.1093/humupd/dmt046
Baker, M. A. et al. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 13, 61–74 (2013).
pubmed: 23161668 doi: 10.1002/pmic.201200350
Rolland, A. D. et al. Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum. Reprod. 28, 199–209 (2013).
pubmed: 23024119 doi: 10.1093/humrep/des360
Milardi, D., Grande, G., Vincenzoni, F., Castagnola, M. & Marana, R. Proteomics of human seminal plasma: Identification of biomarker candidates for fertility and infertility and the evolution of technology. Mol. Reprod. Dev. 80, 350–357 (2013).
pubmed: 23559416 doi: 10.1002/mrd.22178
Ramón, M. et al. Understanding sperm heterogeneity: Biological and practical implications. Reprod. Domest. Anim. 49, 30–36 (2014).
pubmed: 25277430 doi: 10.1111/rda.12404
Bianchi, E. et al. Highly conserved sperm function-related transcripts across three species: Human, rat and mouse. Reprod. Toxicol. 104, 44–51 (2021).
pubmed: 34174366 doi: 10.1016/j.reprotox.2021.06.012
Castillo, J., Estanyol, J. M., Ballescà, J. L. & Oliva, R. Human sperm chromatin epigenetic potential: Genomics, proteomics, and male infertility. Asian J. Androl. 17, 601 (2015).
pubmed: 25926607 pmcid: 4492051 doi: 10.4103/1008-682X.153302
Amaral, A. et al. Human sperm tail proteome suggests new endogenous metabolic pathways*. Mol. Cell. Proteomics 12, 330–342 (2013).
pubmed: 23161514 doi: 10.1074/mcp.M112.020552
Bose, R., Manku, G., Culty, M. & Wing, S. S. Ubiquitin–proteasome system in spermatogenesis. in Posttranslational protein modifications in the reproductive system (ed. Sutovsky, P.) 181–213 (Springer, 2014). Doi: https://doi.org/10.1007/978-1-4939-0817-2_9 .
Sutovsky, P. Sperm proteasome and fertilization. Reproduction 142, 1–14 (2011).
pubmed: 21606061 doi: 10.1530/REP-11-0041
Hajjar, C., Sampuda, K. M. & Boyd, L. Dual roles for ubiquitination in the processing of sperm organelles after fertilization. BMC Dev. Biol. 14, 6 (2014).
pubmed: 24528894 pmcid: 3937010 doi: 10.1186/1471-213X-14-6
Jodar, M., Sendler, E. & Krawetz, S. A. The protein and transcript profiles of human semen. Cell Tissue Res. 363, 85–96 (2016).
pubmed: 26224537 doi: 10.1007/s00441-015-2237-1
Ostermeier, G. C., Miller, D., Huntriss, J. D., Diamond, M. P. & Krawetz, S. A. Delivering spermatozoan RNA to the oocyte. Nature 429, 154–154 (2004).
pubmed: 15141202 doi: 10.1038/429154a
Hayashi, S., Yang, J., Christenson, L., Yanagimachi, R. & Hecht, N. B. Mouse preimplantation embryos developed from oocytes injected with round spermatids or spermatozoa have similar but distinct patterns of early messenger RNA expression1. Biol. Reprod. 69, 1170–1176 (2003).
pubmed: 12773410 doi: 10.1095/biolreprod.103.016832
Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).
pubmed: 24728267 pmcid: 4333222 doi: 10.1038/nn.3695
Donkin, I. et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 23, 369–378 (2016).
pubmed: 26669700 doi: 10.1016/j.cmet.2015.11.004
Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. 112, 13699–13704 (2015).
pubmed: 26483456 pmcid: 4640733 doi: 10.1073/pnas.1508347112
Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).
pubmed: 26721680 doi: 10.1126/science.aad7977
Gapp, K. et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol. Psychiatry 25, 2162–2174 (2020).
pubmed: 30374190 doi: 10.1038/s41380-018-0271-6
Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016).
pubmed: 26721685 doi: 10.1126/science.aad6780
Sendler, E. et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 41, 4104–4117 (2013).
pubmed: 23471003 pmcid: 3627604 doi: 10.1093/nar/gkt132
Sun, Y. H. et al. Single-molecule long-read sequencing reveals a conserved intact long RNA profile in sperm. Nat. Commun. 12, 1361 (2021).
pubmed: 33649327 pmcid: 7921563 doi: 10.1038/s41467-021-21524-6
Miller, D., Ostermeier, G. C. & Krawetz, S. A. The controversy, potential and roles of spermatozoal RNA. Trends Mol. Med. 11, 156–163 (2005).
pubmed: 15823753 doi: 10.1016/j.molmed.2005.02.006
Susor, A., Jansova, D., Anger, M. & Kubelka, M. Translation in the mammalian oocyte in space and time. Cell Tissue Res. 363, 69–84 (2016).
pubmed: 26340983 doi: 10.1007/s00441-015-2269-6
Zhang, Y., Shi, J., Rassoulzadegan, M., Tuorto, F. & Chen, Q. Sperm RNA code programmes the metabolic health of offspring. Nat. Rev. Endocrinol. 15, 489–498 (2019).
pubmed: 31235802 pmcid: 6626572 doi: 10.1038/s41574-019-0226-2
Zhao, Y. et al. Characterization and quantification of mRNA transcripts in ejaculated spermatozoa of fertile men by serial analysis of gene expression. Hum. Reprod. 21, 1583–1590 (2006).
pubmed: 16501037 doi: 10.1093/humrep/del027
Lishko, P. V. et al. The control of male fertility by spermatozoan ion channels. Annu. Rev. Physiol. 74, 453–475 (2012).
pubmed: 22017176 doi: 10.1146/annurev-physiol-020911-153258
Brown, S. G., Publicover, S. J., Barratt, C. L. R. & Martins da Silva, S. J. Human sperm ion channel (dys)function: Implications for fertilization. Hum. Reprod. Update 25, 758–776 (2019).
pubmed: 31665287 pmcid: 6847974 doi: 10.1093/humupd/dmz032
Vyklicka, L. & Lishko, P. V. Dissecting the signaling pathways involved in the function of sperm flagellum. Curr. Opin. Cell Biol. 63, 154–161 (2020).
pubmed: 32097833 pmcid: 7296462 doi: 10.1016/j.ceb.2020.01.015
Martínez-López, P. et al. Mouse sperm K+ currents stimulated by pH and cAMP possibly coded by Slo3 channels. Biochem. Biophys. Res. Commun. 381, 204–209 (2009).
pubmed: 19338774 pmcid: 2713764 doi: 10.1016/j.bbrc.2009.02.008
Brenker, C. et al. The Ca2+-activated K+ current of human sperm is mediated by Slo3. elife 3, 501438 (2014).
doi: 10.7554/eLife.01438
Gao, T. et al. KCNQ1 Potassium Channel Expressed in Human Sperm Is Involved in Sperm Motility, Acrosome Reaction, Protein Tyrosine Phosphorylation, and Ion Homeostasis During Capacitation. Front. Physiol. 12: 55, (2021).
Jodar, M. et al. Absence of sperm RNA elements correlates with idiopathic male infertility. Sci. Transl. Med. 7, 295re6. https://doi.org/10.3389/fphys.2021.761910 (2015).
doi: 10.3389/fphys.2021.761910 pubmed: 26157032 pmcid: 4721635
Bansal, S. K., Gupta, N., Sankhwar, S. N. & Rajender, S. Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS One 10, e0127007 (2015).
pubmed: 25973848 pmcid: 4431685 doi: 10.1371/journal.pone.0127007
Gur, Y. & Breitbart, H. Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 20, 411–416 (2006).
pubmed: 16449571 pmcid: 1369042 doi: 10.1101/gad.367606
Barbagallo, F. et al. Evaluation of sperm mitochondrial function: A key organelle for sperm motility. J. Clin. Med. 9, 363 (2020).
pubmed: 32013061 pmcid: 7073944 doi: 10.3390/jcm9020363
Yang, C. et al. Role of small RNAs harbored by sperm in embryonic development and offspring phenotype. Andrology 11, 770–782 (2023).
pubmed: 36417503 doi: 10.1111/andr.13347
Williams, E. S., Thorne, E. T., Kwiatkowski, D. R., Anderson, S. L. & Lutz, K. Reproductive biology and management of captive black-footed ferrets (Mustela nigripes). Zoo Biol. 10, 383–398 (1991).
doi: 10.1002/zoo.1430100502
USFWS. Black-Footed Ferret Field Operations Manual (Wellingt Colo, 2016).
Kreeger, T. J., Vargas, A., Plumb, G. E. & Thorne, E. T. Ketamine-Medetomidine or Isoflurane Immobilization of Black-Footed Ferrets. J. Wildl. Manag. 62, 654–662 (1998).
doi: 10.2307/3802341
Santymire, R. M., Marinari, P. E., Kreeger, J. S., Wildt, D. E. & Howard, J. Sperm viability in the black-footed ferret (Mustela nigripes) is influenced by seminal and medium osmolality. Cryobiology 53, 37–50 (2006).
pubmed: 16712829 doi: 10.1016/j.cryobiol.2006.03.009
Santymire, R. M. et al. Slow cooling prevents cold-induced damage to sperm motility and acrosomal integrity in the black-footed ferret (Mustela nigripes). Reprod. Fertil. Dev. 19, 652–663 (2007).
pubmed: 17601413 doi: 10.1071/RD06096
Howard, J. Semen collection and analysis in carnivores. Zoo Wild Anim. Med. Curr. Ther. (1993).
Wolf, K. N. et al. Reproductive inefficiency in male black-footed ferrets (Mustela nigripes). Zoo Biol. 19, 517–528 (2000).
pubmed: 11180413 doi: 10.1002/1098-2361(2000)19:6<517::AID-ZOO4>3.0.CO;2-V
Wildt, D. E., Bush, M., Morton, C., Morton, F. & Howard, J. G. Semen characteristics and testosterone profiles in ferrets kept in a long-day photoperiod, and the influence of hCG timing and sperm dilution medium on pregnancy rate after laparoscopic insemination. Reproduction 86, 349–358 (1989).
doi: 10.1530/jrf.0.0860349
Szklarczyk, D. et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).
pubmed: 25352553 doi: 10.1093/nar/gku1003
Szklarczyk, D. et al. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).
pubmed: 27924014 doi: 10.1093/nar/gkw937
Doncheva, N. T., Morris, J. H., Gorodkin, J. & Jensen, L. J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res. 18, 623–632 (2019).
pubmed: 30450911 doi: 10.1021/acs.jproteome.8b00702
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Cline, M. S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366–2382 (2007).
pubmed: 17947979 pmcid: 3685583 doi: 10.1038/nprot.2007.324
Morris, J. H. et al. clusterMaker: A multi-algorithm clustering plugin for Cytoscape. BMC Bioinform. 12, 436 (2011).
doi: 10.1186/1471-2105-12-436
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
pubmed: 19131956 doi: 10.1038/nprot.2008.211
Enrichment Map: A network-based method for gene-set enrichment visualization and interpretation. PLoS One. 15, e13984 (2010).

Auteurs

Nadya Ali (N)

Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA. nadya.ali2362@gmail.com.

Olga Amelkina (O)

Smithsonian's National Zoo and Conservation Biology Institute, Washington D.C., USA. olga.amelkina@gmail.com.

Rachel M Santymire (RM)

Biology Department, Georgia State University, Atlanta, GA, USA.

Klaus-Peter Koepfli (KP)

Smithsonian's National Zoo and Conservation Biology Institute, Washington D.C., USA. kkoepfli@gmu.edu.
Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA. kkoepfli@gmu.edu.

Pierre Comizzoli (P)

Smithsonian's National Zoo and Conservation Biology Institute, Washington D.C., USA.

Juan M Vazquez (JM)

Department of Integrative Biology, University of California, Berkeley, USA. aging@berkeley.edu.

Classifications MeSH