Melatonin receptor structure and signaling.
G protein‐coupled receptors
MT1
MT2
crystal structure
melatonin
melatonin receptors
molecular modeling
signaling
Journal
Journal of pineal research
ISSN: 1600-079X
Titre abrégé: J Pineal Res
Pays: England
ID NLM: 8504412
Informations de publication
Date de publication:
Apr 2024
Apr 2024
Historique:
revised:
05
02
2024
received:
01
11
2023
accepted:
24
03
2024
medline:
8
4
2024
pubmed:
8
4
2024
entrez:
8
4
2024
Statut:
ppublish
Résumé
Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e12952Subventions
Organisme : Japan Agency for Medical Research and Development
Organisme : Japan Society for the Promotion of Science
Organisme : Fondation pour la Recherche Médicale
Organisme : Agence Nationale de la Recherche
Organisme : Centre National de la Recherche Scientifique
Organisme : The National de la Santé et de la Recherche Médicale
Organisme : European Union's Horizon Europe Research and Innovation Program
Organisme : Ligue Contre le Cancer
Informations de copyright
© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Liu L, Labani N, Cecon E, Jockers R. Melatonin target proteins: too many or not enough? Front Endocrinol. 2019;10:791.
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International union of basic and clinical pharmacology. LXXV. nomenclature, classification, and pharmacology of G protein‐coupled melatonin receptors. Pharmacol Rev. 2010;62(3):343‐380.
Jockers R, Delagrange P, Dubocovich ML, et al. Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol. 2016;173(18):2702‐2725.
Sethi S, Radio NM, Kotlarczyk MP, et al. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res. 2010;49(3):222‐238.
Karamitri A, Plouffe B, Bonnefond A, et al. Type 2 diabetes‐associated variants of the MT(2) melatonin receptor affect distinct modes of signaling. Sci Signaling. 2018;11(545):eaan6622.
Hegron A, Huh E, Deupi X, et al. Identification of key regions mediating human melatonin type 1 receptor functional selectivity revealed by natural variants. ACS Pharm Transl Sci. 2021;4(5):1614‐1627.
Hauser AS, Avet C, Normand C, et al. Common coupling map advances GPCR‐G protein selectivity. eLife. 2022;11:e74107.
Baba K, Benleulmi‐Chaachoua A, Journé AS, et al. Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci Signaling. 2013;6(296):ra89.
Gerbier R, Ndiaye‐Lobry D, Martinez de Morentin PB, et al. Pharmacological evidence for transactivation within melatonin MT(2) and serotonin 5‐HT(2C) receptor heteromers in mouse brain. FASEB J. 2021;35(1):e21161.
Ebisawa T, Karne S, Lerner MR, Reppert SM. Expression cloning of a high‐affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci. 1994;91(13):6133‐6137.
Reppert SM, Weaver DR, Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron. 1994;13(5):1177‐1185.
Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci. 1995;92(19):8734‐8738.
Reppert SM, Weaver DR, Ebisawa T, Mahle CD, Kolakowski LF. Cloning of a melatonin‐related receptor from human pituitary. FEBS Lett. 1996;386(2‐3):219‐224.
Drew JE, Barrett P, Williams LM, Conway S, Morgan PJ. The ovine melatonin‐related receptor: cloning and preliminary distribution and binding studies. J Neuroendocrinol. 1998;10(9):651‐661.
Cecon E, Boutin JA, Jockers R. Molecular characterization and pharmacology of melatonin receptors in animals. Receptors. 2023;2(2):127‐147.
Gautier C, Theret I, Lizzo G, et al. Why are we still cloning melatonin receptors? A commentary. Methods Mol Biol. 2022;2550:267‐281.
Denker E, Ebbesson LOE, Hazlerigg DG, Macqueen DJ. Phylogenetic reclassification of vertebrate melatonin receptors to include Mel1d. G3. 2019;9(10):3225‐3238.
Dufourny L, Levasseur A, Migaud M, et al. GPR50 is the mammalian ortholog of Mel1c: evidence of rapid evolution in mammals. BMC Evol Biol. 2008;8:105.
Li Y, Lv Y, Bian C, You X, Shi Q. Molecular evolution of melatonin receptor genes (MTNR) in vertebrates and its shedding light on mtnr1c. Gene. 2021;769:145256.
Clement N, Renault N, Guillaume JL, et al. Importance of the second extracellular loop for melatonin MT(1) receptor function and absence of melatonin binding in GPR50. Br J Pharmacol. 2018;175(16):3281‐3297.
Johansson LC, Stauch B, McCorvy JD, et al. XFEL structures of the human MT(2) melatonin receptor reveal the basis of subtype selectivity. Nature. 2019;569(7755):289‐292.
Stauch B, Johansson LC, McCorvy JD, et al. Structural basis of ligand recognition at the human MT(1) melatonin receptor. Nature. 2019;569(7755):284‐288.
Ishchenko A, Stauch B, Han GW, et al. Toward G protein‐coupled receptor structure‐based drug design using X‐ray lasers. IUCrJ. 2019;6(Pt 6):1106‐1119.
Okamoto HH, Miyauchi H, Inoue A, et al. Cryo‐EM structure of the human MT(1)‐G(i) signaling complex. Nat Struct Mol Biol. 2021;28(8):694‐701.
Wang Q, Lu Q, Guo Q, et al. Structural basis of the ligand binding and signaling mechanism of melatonin receptors. Nat Commun. 2022;13(1):454.
Morimoto K, Suno R, Hotta Y, et al. Crystal structure of the endogenous agonist‐bound prostanoid receptor EP3. Nat Chem Biol. 2019;15(1):8‐10.
Audet M, White KL, Breton B, et al. Crystal structure of misoprostol bound to the labor inducer prostaglandin E(2) receptor. Nat Chem Biol. 2019;15(1):11‐17.
Toyoda Y, Morimoto K, Suno R, et al. Ligand binding to human prostaglandin E receptor EP(4) at the lipid‐bilayer interface. Nat Chem Biol. 2019;15(1):18‐26.
Fan H, Chen S, Yuan X, et al. Structural basis for ligand recognition of the human thromboxane A(2) receptor. Nat Chem Biol. 2019;15(1):27‐33.
Elisi GM, Scalvini L, Lodola A, Mor M, Rivara S. Free‐energy simulations support a lipophilic binding route for melatonin receptors. J Chem Inf Model. 2022;62(1):210‐222.
Ballesteros JA, Weinstein H. Integrated methods for the construction of three‐dimensional models and computational probing of structure‐function relations in G protein‐coupled receptors. Methods Neurosci. 1995;25:366‐428.
Zhou Q, Yang D, Wu M, et al. Common activation mechanism of class A GPCRs. eLife. 2019;8:e50279.
Huang W, Masureel M, Qu Q, et al. Structure of the neurotensin receptor 1 in complex with β‐arrestin 1. Nature. 2020;579(7798):303‐308.
Staus DP, Hu H, Robertson MJ, et al. Structure of the M2 muscarinic receptor–β‐arrestin complex in a lipid nanodisc. Nature. 2020;579(7798):297‐302.
Pala D, Lodola A, Bedini A, Spadoni G, Rivara S. Homology models of melatonin receptors: challenges and recent advances. Int J Mol Sci. 2013;14(4):8093‐8121.
Chan K, Wong Y. A molecular and chemical perspective in defining melatonin receptor subtype selectivity. Int J Mol Sci. 2013;14(9):18385‐18406.
Gerdin MJ, Mseeh F, Dubocovich ML. Mutagenesis studies of the human MT2 melatonin receptor. Biochem Pharmacol. 2003;66(2):315‐320.
Uchikawa O, Fukatsu K, Tokunoh R, et al. Synthesis of a novel series of tricyclic indan derivatives as melatonin receptor agonists. J Med Chem. 2002;45(19):4222‐4239.
Yous S, Andrieux J, Howell HE, et al. Novel naphthalenic ligands with high affinity for the melatonin receptor. J Med Chem. 1992;35(8):1484‐1486.
Rivara S, Vacondio F, Fioni A, et al. N‐(Anilinoethyl)amides: design and synthesis of metabolically stable, selective melatonin receptor ligands. ChemMedChem. 2009;4(10):1746‐1755.
Spadoni G, Bedini A, Lucarini S, et al. Highly potent and selective MT2 melatonin receptor full agonists from conformational analysis of 1‐benzyl‐2‐acylaminomethyl‐tetrahydroquinolines. J Med Chem. 2015;58(18):7512‐7525.
Rivara S, Pala D, Lodola A, et al. MT1‐selective melatonin receptor ligands: synthesis, pharmacological evaluation, and molecular dynamics investigation of N‐[(3‐O‐substituted)anilino]alkylamides. ChemMedChem. 2012;7(11):1954‐1964.
Elisi GM, Scalvini L, Lodola A, Bedini A, Spadoni G, Rivara S. In silico drug discovery of melatonin receptor ligands with therapeutic potential. Expert Opin Drug Discovery. 2022;17(4):343‐354.
Pala D, Beuming T, Sherman W, Lodola A, Rivara S, Mor M. Structure‐based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement. J Chem Inf Model. 2013;53(4):821‐835.
Popovska‐Gorevski M, Dubocovich ML, Rajnarayanan RV. Carbamate insecticides target human melatonin receptors. Chem Res Toxicol. 2017;30(2):574‐582.
Glatfelter GC, Jones AJ, Rajnarayanan RV, Dubocovich ML. Pharmacological actions of carbamate insecticides at mammalian melatonin receptors. J Pharmacol Exp Ther. 2021;376(2):306‐321.
Tassan Mazzocco M, Pisanu C, Russo L, et al. Melatonin MT1 receptors as a target for the psychopharmacology of bipolar disorder: a translational study. Pharmacol Res. 2023;198:106993.
Ayoub MA, Couturier C, Lucas‐Meunier E, et al. Monitoring of ligand‐independent dimerization and ligand‐induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem. 2002;277(24):21522‐21528.
Tse LH, Wong YH. Modeling the heterodimer interfaces of melatonin receptors. Front Cell Neurosci. 2021;15:725296.
Zhao DY, Pöge M, Morizumi T, et al. Cryo‐EM structure of the native rhodopsin dimer in nanodiscs. J Biol Chem. 2019;294(39):14215‐14230.
Liu L, Jockers R. Structure‐based virtual screening accelerates GPCR drug discovery. Trends Pharmacol Sci. 2020;41(6):382‐384.
Stein RM, Kang HJ, McCorvy JD, et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature. 2020;579(7800):609‐614.
Patel N, Huang XP, Grandner JM, et al. Structure‐based discovery of potent and selective melatonin receptor agonists. eLife. 2020;9;e53779.
Cui W, Dong J, Wang S, Vogel H, Zou R, Yuan S. Molecular basis of ligand selectivity for melatonin receptors. RSC Adv. 2023;13(7):4422‐4430.
Rivara S, Lodola A, Mor M, et al. N‐(substituted‐anilinoethyl)amides: design, synthesis, and pharmacological characterization of a new class of melatonin receptor ligands. J Med Chem. 2007;50(26):6618‐6626.
Elisi GM, Bedini A, Scalvini L, et al. Chiral recognition of flexible melatonin receptor ligands induced by conformational equilibria. Molecules. 2020;25(18):4057.
Mari M, Elisi GM, Bedini A, et al. 2‐Arylmelatonin analogues: probing the 2‐phenyl binding pocket of melatonin MT(1) and MT(2) receptors. Eur J Med Chem. 2022;243:114762.
Zlotos DP, Jockers R, Cecon E, Rivara S, Witt‐Enderby PA. MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J Med Chem. 2014;57(8):3161‐3185.
Ferlenghi F, Mari M, Gobbi G, et al. N‐(anilinoethyl)amide melatonergic ligands with improved water solubility and metabolic stability. ChemMedChem. 2021;16(19):3071‐3082.
Bedini A, Elisi GM, Fanini F, et al. Binding and unbinding of potent melatonin receptor ligands: mechanistic simulations and experimental evidence. J Pineal Res. 2024;76:e12941.
Reppart SM, Weaver DR, Godson C. Melatonin receptors step into the light: cloning and classification of subtypes. Trends Pharmacol Sci. 1996;17(3):100‐102.
Brydon L, Roka F, Petit L, et al. Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins. Mol Endocrinol. 1999;13(12):2025‐2038.
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol. 2018;175(16):3263‐3280.
Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discovery. 2018;17(4):243‐260.
García‐Pergañeda A, Pozo D, Guerrero JM, Calvo JR. Signal transduction for melatonin in human lymphocytes: involvement of a pertussis toxin‐sensitive G protein. J Immunol. 1997;159(8):3774‐3781.
Mihanfar A, Yousefi B, Azizzadeh B, Majidinia M. Interactions of melatonin with various signaling pathways: implications for cancer therapy. Cancer Cell Int. 2022;22(1):420.
Petit L, Lacroix I, de Coppet P, Strosberg AD, Jockers R. Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3'‐5'‐monophosphate pathway. Biochem Pharmacol. 1999;58(4):633‐639.
Stumpf I, Bazwinsky I, Peschke E. Modulation of the cGMP signaling pathway by melatonin in pancreaticβ‐cells. J Pineal Res. 2009;46(2):140‐147.
Shu T, Wu T, Pang M, et al. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells. Biochem Biophys Res Commun. 2016;474(3):566‐571.
Wu H, Song C, Zhang J, et al. Melatonin‐mediated upregulation of GLUT1 blocks exit from pluripotency by increasing the uptake of oxidized vitamin C in mouse embryonic stem cells. FASEB J. 2017;31(4):1731‐1743.
Chen M, Cecon E, Karamitri A, et al. Melatonin MT(1) and MT(2) receptor ERK signaling is differentially dependent on G(i/o) and G(q/11) proteins. J Pineal Res. 2020;68(4):e12641.
Ozdamar Unal G, Demirdas A, Nazıroglu M, Ovey IS. Agomelatine attenuates calcium signaling and apoptosis via the inhibition of TRPV1 channel in the hippocampal neurons of rats with chronic mild stress depression model. Behav Brain Res. 2022;434:114033.
Jardin I, Diez‐Bello R, Falcon D, et al. Melatonin downregulates TRPC6, impairing store‐operated calcium entry in triple‐negative breast cancer cells. J Biol Chem. 2021;296:100254.
Zhang Y, Li H, Pu Y, et al. Melatonin‐mediated inhibition of Purkinje neuron P‐type Ca(2)(+) channels in vitro induces neuronal hyperexcitability through the phosphatidylinositol 3‐kinase‐dependent protein kinase C delta pathway. J Pineal Res. 2015;58(3):321‐334.
Nelson CS, Marino JL, Allen CN. Melatonin receptors activate heteromeric G‐protein coupled Kir3 channels. Neuroreport. 1996;7(3):717‐720.
van den Top M, Buijs RM, Ruijter JM, Delagrange P, Spanswick D, Hermes MLHJ. Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro independent of their circadian rhythm. Neuroscience. 2001;107(1):99‐108.
Hablitz LM, Molzof HE, Abrahamsson KE, Cooper JM, Prosser RA, Gamble KL. GIRK channels mediate the nonphotic effects of exogenous melatonin. J Neurosci. 2015;35(45):14957‐14965.
Ferré S, Ciruela F, Dessauer CW, et al. G protein‐coupled receptor‐effector macromolecular membrane assemblies (GEMMAs). Pharmacol Ther. 2022;231:107977.
Benleulmi‐Chaachoua A, Chen L, Sokolina K, et al. Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res. 2016;60(1):95‐108.
Gaitonde SA, González‐Maeso J. Contribution of heteromerization to G protein‐coupled receptor function. Curr Opin Pharmacol. 2017;32:23‐31.
Ayoub MA, Levoye A, Delagrange P, Jockers R. Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol Pharmacol. 2004;66(2):312‐321.
Oishi A, Cecon E, Jockers R. Melatonin receptor signaling: impact of receptor oligomerization on receptor function. Int Rev Cell Mol Biol. 2018;338:59‐77.
Levoye A, Dam J, Ayoub MA, et al. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 2006;25(13):3012‐3023.
Kamal M, Gbahou F, Guillaume JL, et al. Convergence of melatonin and serotonin (5‐HT) signaling at MT2/5‐HT2C receptor heteromers. J Biol Chem. 2015;290(18):11537‐11546.
Moreno JL, Miranda‐Azpiazu P, García‐Bea A, et al. Allosteric signaling through an mGlu2 and 5‐HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signaling. 2016;9(410):ra5.
Legros C, Dupré C, Brasseur C, et al. Characterization of the various functional pathways elicited by synthetic agonists or antagonists at the melatonin MT(1) and MT(2) receptors. Pharmacol Res Perspect. 2020;8(1):e00539.
Angeloni D, Longhi R, Fraschini F. Production and characterization of antibodies directed against the human melatonin receptors Mel‐1a (mt1) and Mel‐1b (MT2). Eur J Histochem: EJH. 2000;44(2):199‐204.
Sengupta A, Baba K, Mazzoni F, et al. Localization of melatonin receptor 1 in mouse retina and its role in the circadian regulation of the electroretinogram and dopamine levels. PLoS One. 2011;6(9):e24483.
Sheng WL, Chen WY, Yang XL, Zhong YM, Weng SJ. Co‐expression of two subtypes of melatonin receptor on rat M1‐type intrinsically photosensitive retinal ganglion cells. PLoS One. 2015;10(2):e0117967.
Cecon E, Ivanova A, Luka M, et al. Detection of recombinant and endogenous mouse melatonin receptors by monoclonal antibodies targeting the C‐terminal domain. J Pineal Res. 2019;66(2):e12540.
Gbahou F, Jockers R. 2‐[(125)I]iodomelatonin and [(3)H]melatonin binding assays for melatonin receptors. Methods Mol Biol. 2022;2550:141‐149.
Gbahou F, Levin S, Tikhonova IG, et al. Luminogenic HiBiT peptide‐based NanoBRET ligand binding assays for melatonin receptors. ACS Pharm Transl Sci. 2022;5(8):668‐678.
Gerbier R, Jockers R. GTPgammaS binding assay for melatonin receptors in mouse brain tissue. Methods Mol Biol. 2022;2550:163‐169.
Dupre C, Legros C, Boutin JA. Functionality of melatonin receptors: recruitment of beta‐arrestin at MT1. Methods Mol Biol. 2022;2550:195‐199.
Oishi A, Dam J, Jockers R. β‐Arrestin‐2 BRET biosensors detect different β‐arrestin‐2 conformations in interaction with GPCRs. ACS Sens. 2020;5(1):57‐64.
Dupre C, Legros C, Boutin JA. Functionality of melatonin receptors: internalization. Methods Mol Biol. 2022;2550:189‐193.
Cecon E, Guillaume JL, Jockers R. Functional investigation of melatonin receptor activation by homogenous cAMP assay. Methods Mol Biol. 2022;2550:179‐188.
Bonnaud A, Dupre C, Legros C, Boutin JA. MT1 receptor signaling pathways by impedance measurement. Methods Mol Biol. 2022;2550:201‐206.
Oishi A, Jockers R. Measuring Protein‐Protein interactions of melatonin receptors by bioluminescence resonance energy transfer (BRET). Methods Mol Biol. 2022;2550:207‐218.
Liu C, Weaver DR, Jin X, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19(1):91‐102.
Jin X, von Gall C, Pieschl RL, et al. Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol. 2003;23(3):1054‐1060.
Tosini G, Owino S, Guillaume JL, Jockers R. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. BioEssays. 2014;36(8):778‐787.
Klosen P, Lapmanee S, Schuster C, et al. MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J Pineal Res. 2019;67(1):e12575.
Klosen P. Beta‐galactosidase as a transgenic reporter for the mapping and phenotyping of MT(1) and MT(2) melatonin receptor‐expressing cells. Methods Mol Biol. 2022;2550:243‐265.
Guo Q, He B, Zhong Y, et al. A method for structure determination of GPCRs in various states. Nat Chem Biol. 2023;20:74‐82.
Torrens‐Fontanals M, Stepniewski TM, Aranda‐García D, Morales‐Pastor A, Medel‐Lacruz B, Selent J. How do molecular dynamics data complement static structural data of GPCRs. Int J Mol Sci. 2020;21(16):5933.
Gbahou F, Cecon E, Viault G, et al. Design and validation of the first cell‐impermeant melatonin receptor agonist. Br J Pharmacol. 2017;174(14):2409‐2421.
Suofu Y, Li W, Jean‐Alphonse FG, et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci. 2017;114(38):E7997‐E8006.
Somalo‐Barranco G, Pagano Zottola AC, Abdulrahman AO, et al. Mitochondria‐targeted melatonin photorelease supports the presence of melatonin MT1 receptors in mitochondria inhibiting respiration. Cell Chem Biol. 2023;30(8):920‐932.e7.
Li R, Li T, Lu G, et al. Programming cell‐surface signaling by phase‐separation‐controlled compartmentalization. Nat Chem Biol. 2022;18(12):1351‐1360.