Prevalence of the protective OAS1 rs10774671-G allele against severe COVID-19 in Moroccans: implications for a North African Neanderthal connection.
Humans
2',5'-Oligoadenylate Synthetase
/ genetics
Male
Polymorphism, Single Nucleotide
Neanderthals
/ genetics
Animals
Haplotypes
COVID-19
/ genetics
Alleles
Female
Middle Aged
Adult
SARS-CoV-2
/ genetics
Genetic Predisposition to Disease
Genotype
Prevalence
Gene Frequency
Africa, Northern
Aged
North African People
Journal
Archives of virology
ISSN: 1432-8798
Titre abrégé: Arch Virol
Pays: Austria
ID NLM: 7506870
Informations de publication
Date de publication:
25 Apr 2024
25 Apr 2024
Historique:
received:
02
11
2023
accepted:
26
02
2024
medline:
25
4
2024
pubmed:
25
4
2024
entrez:
24
4
2024
Statut:
epublish
Résumé
The clinical presentation of COVID-19 shows high variability among individuals, which is partly due to genetic factors. The OAS1/2/3 cluster has been found to be strongly associated with COVID-19 severity. We examined this locus in the Moroccan population for the occurrence of the critical variant rs10774671 and its respective haplotype blocks. The frequency of single-nucleotide polymorphisms (SNPs) in the cluster of OAS immunity genes in 157 unrelated individuals of Moroccan origin was determined using an in-house exome database. OAS1 exon 6 of 71 SARS-CoV-2-positive individuals with asymptomatic/mild disease and 74 with moderate/severe disease was sequenced by the Sanger method. The genotypic, allelic, and haplotype frequencies of three SNPs were compared between these two groups. Finally, males in our COVID-19 series were genotyped for the Berber-specific marker E-M81. The prevalence of the OAS1 rs10774671-G allele in present-day Moroccans was found to be 40.4%, which is similar to that found in Europeans. However, it was found equally in both the Neanderthal GGG haplotype and the African GAC haplotype, with a frequency of 20% each. These two haplotypes, and hence the rs10774671-G allele, were significantly associated with protection against severe COVID-19 (p = 0.034, p = 0.041, and p = 0.008, respectively). Surprisingly, in men with the Berber-specific uniparental markers, the African haplotype was absent, while the prevalence of the Neanderthal haplotype was similar to that in Europeans. The protective rs10774671-G allele of OAS1 was found only in the Neanderthal haplotype in Berbers, the indigenous people of North Africa, suggesting that this region may have served as a stepping-stone for the passage of hominids to other continents.
Identifiants
pubmed: 38658463
doi: 10.1007/s00705-024-06038-y
pii: 10.1007/s00705-024-06038-y
doi:
Substances chimiques
2',5'-Oligoadenylate Synthetase
EC 2.7.7.84
OAS1 protein, human
EC 2.7.7.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
109Informations de copyright
© 2024. The Author(s).
Références
Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, Megawati D, Hayati Z, Wagner AL, Mudatsir M (2020) Coronavirus disease 2019 (COVID-19): A literature review. J Infect Pub Health 13:667–673. https://doi.org/10.1016/j.jiph.2020.03.019
doi: 10.1016/j.jiph.2020.03.019
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W (2020) A novel coronavirus from patients with pneumonia in China, 2019. New Engl J Med 382:727–733. https://doi.org/10.1056/nejmoa2001017
doi: 10.1056/nejmoa2001017
pubmed: 31978945
Ranjan J, Ravindra A, Mishra B (2021) Gender and genetic factors impacting COVID-19 severity. J Family Med Prim Care 10:3956–3963. https://doi.org/10.4103/jfmpc.jfmpc_769_21
doi: 10.4103/jfmpc.jfmpc_769_21
pubmed: 35136752
pmcid: 8797126
Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D et al (2020) Genetic mechanisms of critical illness in COVID-19. Nature 591:92–98. https://doi.org/10.1038/s41586-020-03065-y
doi: 10.1038/s41586-020-03065-y
pubmed: 33307546
Zhou S, Hill CS, Sarkar S, Tse LV, Woodburn BMD, Schinazi RF, Sheahan TP, Baric RS, Heise MT, Swanstrom R (2021) β-d-N 4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J Infect Dis 224:415–419. https://doi.org/10.1093/infdis/jiab247
doi: 10.1093/infdis/jiab247
pubmed: 33961695
pmcid: 8136050
Zeberg H, Pääbo S (2021) A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc Natl Acad Sci USA 118:e2026309118. https://doi.org/10.1073/pnas.2026309118
doi: 10.1073/pnas.2026309118
pubmed: 33593941
pmcid: 7936282
Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Papenberg BW, Zahoor M et al (2022) Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat Genet 54:1103–1116. https://doi.org/10.1038/s41588-022-01113-z
doi: 10.1038/s41588-022-01113-z
pubmed: 35835913
pmcid: 9355882
Huffman JE, Butler-Laporte G, Khan A, Pairo-Castineira E, Drivas TG, Peloso GM, Nakanishi T, COVID-19 Host Genetics Initiative, Ganna A, Verma A, Baillie JK, Kiryluk K, Richards JB, Zeberg H (2022) Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19. Nat Genet 54:125–127. https://doi.org/10.1038/s41588-021-00996-8
doi: 10.1038/s41588-021-00996-8
pubmed: 35027740
pmcid: 8837537
Kjær KH, Pahus J, Hansen MF, Poulsen JB, Christensen EI, Justesen J, Martensen PM (2014) Mitochondrial localization of the OAS1 p46 isoform associated with a common single nucleotide polymorphism. BMC Cell Biol 15:33. https://doi.org/10.1186/1471-2121-15-33
doi: 10.1186/1471-2121-15-33
pubmed: 25205466
pmcid: 4165621
Choi UY, Kang JS, Hwang YS, Kim YJ (2015) Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp Mol Med 47:e144. https://doi.org/10.1038/emm.2014.110
doi: 10.1038/emm.2014.110
pubmed: 25744296
pmcid: 4351405
Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML et al (2021) A prenylated dsRNA sensor protects against severe COVID-19. Science 374:eabj3624. https://doi.org/10.1126/science.abj3624
doi: 10.1126/science.abj3624
pubmed: 34581622
pmcid: 7612834
Soveg FW, Schwerk J, Gokhale NS, Cerosaletti K, Smith JR, Pairo-Castineira E, Kell AM, Forero A, Zaver SA, Esser-Nobis K, Roby JA, Hsiang TY, Ozarkar S, Clingan JM, McAnarney ET, Stone AE, Malhotra U, Speake C, Perez J, Balu C, Allenspach EJ, Hyde JL, Menachery VD, Sarkar SN, Woodward JJ, Stetson DB, Baillie JK, Buckner JH, Gale M Jr, Savan R (2021) Endomembrane targeting of human OAS1 p46 augments antiviral activity. Elife 10:e71047. https://doi.org/10.7554/eLife.71047
doi: 10.7554/eLife.71047
pubmed: 34342578
pmcid: 8357416
Lim JK, Lisco A, McDermott DH, Huynh L, Ward JM, Johnson B, Johnson H, Pape J, Foster GA, Krysztof D, Follmann D, Stramer SL, Margolis LB, Murphy PM (2009) Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog 5:e1000321. https://doi.org/10.1371/journal.ppat.1000321
doi: 10.1371/journal.ppat.1000321
pubmed: 19247438
pmcid: 2642680
O’Brien M, Lonergan R, Costelloe L, O’Rourke K, Fletcher JM, Kinsella K, Sweeney C, Antonelli G, Mills KH, O’Farrelly C, Hutchinson M, Tubridy N (2010) OAS1: a multiple sclerosis susceptibility gene that influences disease severity. Neurology 75:411–418. https://doi.org/10.1212/wnl.0b013e3181ebdd2b
doi: 10.1212/wnl.0b013e3181ebdd2b
pubmed: 20679634
Mandal S, Abebe F, Chaudhary J (2011) 2′-5′ oligoadenylate synthetase 1 polymorphism is associated with prostate cancer. Cancer 117:5509–5518. https://doi.org/10.1002/cncr.26219
doi: 10.1002/cncr.26219
pubmed: 21638280
Sams AJ, Dumaine A, Nédélec Y, Yotova V, Alfieri C, Tanner JE, Messer PW, Barreiro LB (2016) Adaptively introgressed Neandertal haplotype at the OAS locus functionally impacts innate immune responses in humans. Genome Biol 17:246. https://doi.org/10.1186/s13059-016-1098-6
doi: 10.1186/s13059-016-1098-6
pubmed: 27899133
pmcid: 5129249
Liu X, Xing H, Gao W, Yu D, Zhao Y, Shi X, Zhang K, Li P, Yu J, Xu W, Shan H, Zhang K, Bao W, Fu X, Yang S, Wang S (2017) A functional variant in the OAS1 gene is associated with Sjögren’s syndrome complicated with HBV infection. Sci Rep 7:17571. https://doi.org/10.1038/s41598-017-17931-9
doi: 10.1038/s41598-017-17931-9
pubmed: 29242559
pmcid: 5730593
Wu S, Wang Y, Chen G, Zhang M, Wang M, He JQ (2018) 2′-5′-Oligoadenylate synthetase 1 polymorphisms are associated with tuberculosis: a case-control study. BMC Pulm Med 18:180. https://doi.org/10.1186/s12890-018-0746-x
doi: 10.1186/s12890-018-0746-x
pubmed: 30497421
pmcid: 6267069
Zeberg H, Pääbo S (2020) The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587:610–612. https://doi.org/10.1038/s41586-020-2818-3
doi: 10.1038/s41586-020-2818-3
pubmed: 32998156
Ben El Haj R, Salmi A, Regragui W, Moussa A, Bouslam N, Tibar H, Benomar A, Yahyaoui M, Bouhouche A (2017) Evidence for prehistoric origins of the G2019S mutation in the North African Berber population. PLoS One 12:e0181335. https://doi.org/10.1371/journal.pone.0181335
doi: 10.1371/journal.pone.0181335
pubmed: 28723952
pmcid: 5517005
Schöley J, Aburto JM, Kashnitsky I, Kniffka MS, Zhang L, Jaadla H, Dowd JB, Kashyap R (2022) Life expectancy changes since COVID-19. Nat Hum Behav 6(12):1649–1659. https://doi.org/10.1038/s41562-022-01450-3
doi: 10.1038/s41562-022-01450-3
pubmed: 36253520
pmcid: 9755047
Botigué LR, Henn BM, Gravel S, Maples BK, Gignoux CR, Corona E, Atzmon G, Burns E, Ostrer H, Flores C, Bertranpetit J, Comas D, Bustamante CD (2013) Gene flow from North Africa contributes to differential human genetic diversity in southern Europe. Proc Natl Acad Sci USA 110:11791–11796. https://doi.org/10.1073/pnas.1306223110
doi: 10.1073/pnas.1306223110
pubmed: 23733930
pmcid: 3718088
Schuenemann VJ, Peltzer A, Welte B, van Pelt WP, Molak M, Wang CC, Furtwängler A, Urban C, Reiter E, Nieselt K, Teßmann B, Francken M, Harvati K, Haak W, Schiffels S, Krause J (2017) Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nat Commun 8:15694. https://doi.org/10.1038/ncomms15694
doi: 10.1038/ncomms15694
pubmed: 28556824
pmcid: 5459999
Pakstis AJ, Gurkan C, Dogan M, Balkaya HE, Dogan S, Neophytou PI et al (2019) Genetic relationships of European, Mediterranean, and SW Asian populations using a panel of 55 AISNPs. Eur J Hum Genet 27:1885–1893. https://doi.org/10.1038/s41431-019-0466-6
doi: 10.1038/s41431-019-0466-6
pubmed: 31285530
pmcid: 6871633
van de Loosdrecht M, Bouzouggar A, Humphrey L, Posth C, Barton N, Aximu-Petri A, Nickel B, Nagel S, Talbi EH, El Hajraoui MA, Amzazi S, Hublin JJ, Pääbo S, Schiffels S, Meyer M, Haak W, Jeong C, Krause J (2018) Pleistocene North African genomes link near Eastern and sub-Saharan African human populations. Science 360:548–552. https://doi.org/10.1126/science.aar8380
doi: 10.1126/science.aar8380
pubmed: 29545507
Lesage S, Patin E, Condroyer C, Leutenegger AL, Lohmann E, Giladi N et al (2010) Parkinson’s disease-related LRRK2 G2019S mutation results from independent mutational events in humans. Hum Mol Genet 19:1998–2004. https://doi.org/10.1093/hmg/ddq081
doi: 10.1093/hmg/ddq081
pubmed: 20197411
Bruner E, Pearson O (2013) Neurocranial evolution in modern humans: the case of Jebel Irhoud 1. Anthropol Sci 121:31–41. https://doi.org/10.1537/ase.120927
doi: 10.1537/ase.120927
Kennedy KAR (1992) Continuity or Replacement: Controversies in Homo sapiens evolution (1st ed.). In: Bräuer G and Smith FH (ed). Rotterdam, Netherlands and Brookfield. https://doi.org/10.1002/ajpa.1330890213
Hublin JJ, Ben-Ncer A, Bailey SE, Freidline SE, Neubauer SMM, Bergmann I, Le Cabec A, Benazzi S, Harvati K, Gunz P (2017) New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546:289–292. https://doi.org/10.1038/nature22336
doi: 10.1038/nature22336
pubmed: 28593953
Mounier A, Mirazón LM (2019) Deciphering African late middle Pleistocene hominin diversity and the origin of our species. Nat Commun 10:3406. https://doi.org/10.1038/s41467-019-11213-w
doi: 10.1038/s41467-019-11213-w
pubmed: 31506422
pmcid: 6736881
Crooks L, Cooper-Knock J, Heath PR, Bouhouche A, Elfahime M, Azzouz M, Bakri Y, Adnaoui M, Ibrahimi A, Amzazi S, Tazi-Ahnini R (2020) Identification of single nucleotide variants in the Moroccan population by whole-genome sequencing. BMC Genet 21:111. https://doi.org/10.1186/s12863-020-00917-4
doi: 10.1186/s12863-020-00917-4
pubmed: 32957965
pmcid: 7507649
Sánchez-Quinto F, Botigué LR, Civit S, Arenas C, Avila-Arcos MC, Bustamante CD, Comas D, Lalueza-Fox C (2012) North African populations carry the signature of admixture with Neandertals. PLoS One 7:e47765. https://doi.org/10.1371/journal.pone.0047765
doi: 10.1371/journal.pone.0047765
pubmed: 23082212
pmcid: 3474783
Arambourg C (1962) Découverte au Maroc d'un crâne de Néanderthalien. Bulletin de la Société Préhistorique Française 59-7-8:513-514
Mohib A, Raynal JP, Gallotti R, Daujeard C, El Graoui M, Fernandes P, Geraads D, Magoga L, Rué M, Sbihi-Alaoui FZ, Lefèvre D (2019) Forty Years of Research at Casablanca (Morocco): New Insights in the Early/Middle Pleistocene Archaeology and Geology. Hespéris-Tamuda, Eléments d’Archéologie préhistorique marocaine LIV (3):25-56. hal-03067997
Gallotti R, Muttoni G, Lefèvre D, Degeai JP, Geraads D, Zerboni A, Andrieu-Ponel V, Maron M, Perini S, El Graoui M, Sanz-Laliberté S, Daujeard C, Fernandes P, Rué M, Magoga L, Mohib A, Raynal JP (2021) First high resolution chronostratigraphy for the early North African Acheulean at Casablanca (Morocco). Sci Rep 11:15340. https://doi.org/10.1038/s41598-021-94695-3
doi: 10.1038/s41598-021-94695-3
pubmed: 34321552
pmcid: 8319413