Overlapping Streptococcus pyogenes and Streptococcus dysgalactiae subspecies equisimilis household transmission and mobile genetic element exchange.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Apr 2024
Historique:
received: 12 01 2024
accepted: 12 04 2024
medline: 25 4 2024
pubmed: 25 4 2024
entrez: 24 4 2024
Statut: epublish

Résumé

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.

Identifiants

pubmed: 38658529
doi: 10.1038/s41467-024-47816-1
pii: 10.1038/s41467-024-47816-1
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

3477

Subventions

Organisme : Wellcome Trust
ID : 206194
Pays : United Kingdom

Informations de copyright

© 2024. The Author(s).

Références

Brandt, C. M. & Spellerberg, B. Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin. Infect. Dis. 49, 766–772 (2009).
doi: 10.1086/605085 pubmed: 19635028
Wiegele, S. et al. The epidemiology of superficial streptococcal A (impetigo and pharyngitis) infections in Australia: a systematic review. PLoS ONE 18, e0288016 (2023).
doi: 10.1371/journal.pone.0288016 pubmed: 38033025 pmcid: 10688633
Boyd, R. et al. High burden of invasive group A streptococcal disease in the Northern Territory of Australia. Epidemiol. Infect. 144, 1018–1027 (2016).
doi: 10.1017/S0950268815002010 pubmed: 26364646
Wright, C. M. et al. Increasing incidence of invasive group A streptococcal disease in Western Australia, particularly among Indigenous people. Med. J. Aust. 215, 36–41 (2021).
doi: 10.5694/mja2.51117 pubmed: 34091892
May, P. J., Bowen, A. C. & Carapetis, J. R. The inequitable burden of group A streptococcal diseases in indigenous Australians. Med. J. Aust. 205, 201–203 (2016).
doi: 10.5694/mja16.00400 pubmed: 27581260
Wright, C. M. et al. Invasive infections caused by lancefield groups C/G and A Streptococcus, Western Australia, Australia, 2000-2018. Emerg. Infect. Dis. 28, 2190–2197 (2022).
doi: 10.3201/eid2811.220029 pubmed: 36285885 pmcid: 9622247
Haidan, A. et al. Pharyngeal carriage of group C and group G streptococci and acute rheumatic fever in an Aboriginal population. Lancet 356, 1167–1169 (2000).
doi: 10.1016/S0140-6736(00)02765-3 pubmed: 11030302
Sikder, S. et al. Group G Streptococcus induces an autoimmune carditis mediated by interleukin 17A and interferon γ in the Lewis rat model of rheumatic heart disease. J. Infect. Dis. 218, 324–335 (2017).
doi: 10.1093/infdis/jix637
Oppegaard, O. et al. Streptococcus dysgalactiae bloodstream infections, Norway, 1999-2021. Emerg. Infect. Dis. 29, 260–267 (2023).
doi: 10.3201/eid2902.221218 pubmed: 36692331 pmcid: 9881787
Wajima, T. et al. Molecular characterization of invasive Streptococcus dysgalactiae subsp. equisimilis, Japan. Emerg. Infect. Dis. 22, 247–254 (2016).
doi: 10.3201/eid2202.141732 pubmed: 26760778 pmcid: 4734521
McMillan, D. J. et al. Population genetics of Streptococcus dysgalactiae subspecies equisimilis reveals widely dispersed clones and extensive recombination. PLoS ONE 5, e11741 (2010).
doi: 10.1371/journal.pone.0011741 pubmed: 20668530 pmcid: 2909212
McNeilly, C. L. & McMillan, D. J. Horizontal gene transfer and recombination in Streptococcus dysgalactiae subsp. equisimilis. Front. Microbiol. 5, 676 (2014).
doi: 10.3389/fmicb.2014.00676 pubmed: 25566202 pmcid: 4266089
Xie, O. et al. Inter-species gene flow drives ongoing evolution of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis. Nat. Commun. 15, 2286 (2024).
doi: 10.1038/s41467-024-46530-2 pubmed: 38480728 pmcid: 10937727
Belotserkovsky, I. et al. Functional analysis of the quorum-sensing streptococcal invasion locus (sil). PLoS Pathog. 5, e1000651 (2009).
doi: 10.1371/journal.ppat.1000651 pubmed: 19893632 pmcid: 2766830
Armstrong, B. D. et al. Identification of a two-component Class IIb bacteriocin in Streptococcus pyogenes by recombinase-based in vivo expression technology. Sci. Rep. 6, 36233 (2016).
doi: 10.1038/srep36233 pubmed: 27808235 pmcid: 5093712
Heng, N. C. K. et al. Dysgalacticin: a novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis. Microbiology 152, 1991–2001 (2006).
doi: 10.1099/mic.0.28823-0 pubmed: 16804174
Lacey, J. A. et al. Evaluating the role of asymptomatic throat carriage of Streptococcus pyogenes in impetigo transmission in remote Aboriginal communities in Northern Territory, Australia: a retrospective genomic analysis. Lancet Microbe 4, E524–E533 (2023).
McDonald, M., Towers, R. J., Andrews, R. M., Carapetis, J. R. & Currie, B. J. Epidemiology of Streptococcus dysgalactiae subsp. equisimilis in tropical communities, Northern Australia. Emerg. Infect. Dis. 13, 1694–1700 (2007).
doi: 10.3201/eid1311.061258 pubmed: 18217553 pmcid: 3375807
McDonald, M. I. et al. Low rates of streptococcal pharyngitis and high rates of pyoderma in Australian aboriginal communities where acute rheumatic fever is hyperendemic. Clin. Infect. Dis. 43, 683–689 (2006).
doi: 10.1086/506938 pubmed: 16912939
Khedkar, S. et al. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res. 50, 3155–3168 (2022).
doi: 10.1093/nar/gkac163 pubmed: 35323968 pmcid: 8989519
Iannelli, F. et al. Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes. Front. Microbiol. 5, 687 (2014).
doi: 10.3389/fmicb.2014.00687 pubmed: 25538698 pmcid: 4260502
Sumby, P. et al. Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J. Infect. Dis. 192, 771–782 (2005).
doi: 10.1086/432514 pubmed: 16088826
Steer, A. C. et al. Prospective surveillance of streptococcal sore throat in a tropical country. Pediatr. Infect. Dis. J. 28, 477–482 (2009).
doi: 10.1097/INF.0b013e318194b2af pubmed: 19483515
Jose, J. J. M. et al. Streptococcal group A, C and G pharyngitis in school children: a prospective cohort study in Southern India. Epidemiol. Infect. 146, 848–853 (2018).
doi: 10.1017/S095026881800064X pubmed: 29616606
Turner, J. C., Hayden, F. G., Lobo, M. C., Ramirez, C. E. & Murren, D. Epidemiologic evidence for Lancefield group C beta-hemolytic streptococci as a cause of exudative pharyngitis in college students. J. Clin. Microbiol. 35, 1–4 (1997).
doi: 10.1128/jcm.35.1.1-4.1997 pubmed: 8968872 pmcid: 229503
Tonkin-Hill, G. et al. Pneumococcal within-host diversity during colonization, transmission and treatment. Nat. Microbiol. 7, 1791–1804 (2022).
doi: 10.1038/s41564-022-01238-1 pubmed: 36216891 pmcid: 9613479
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes De Novo assembler. Curr. Protoc. Bioinform. 70, e102 (2020).
doi: 10.1002/cpbi.102
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
doi: 10.1093/bioinformatics/btu153 pubmed: 24642063
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
doi: 10.1186/s13059-019-1891-0 pubmed: 31779668 pmcid: 6883579
Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 3, 124 (2018).
doi: 10.12688/wellcomeopenres.14826.1 pubmed: 30345391 pmcid: 6192448
Lees, J. A. et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 29, 304–316 (2019).
doi: 10.1101/gr.241455.118 pubmed: 30679308 pmcid: 6360808
Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–w50 (2023).
doi: 10.1093/nar/gkad344 pubmed: 37140036 pmcid: 10320115
Davies, M. R. et al. Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nat. Genet. 51, 1035–1043 (2019).
doi: 10.1038/s41588-019-0417-8 pubmed: 31133745 pmcid: 6650292
Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21, 180 (2020).
doi: 10.1186/s13059-020-02090-4 pubmed: 32698896 pmcid: 7376924
Jespersen, M. G., Hayes, A. & Davies, M. R. Corekaburra: pan-genome post-processing using core gene synteny. J. Open Source Softw. 7, 4910 (2022).
doi: 10.21105/joss.04910
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
doi: 10.1093/molbev/msaa015 pubmed: 32011700 pmcid: 7182206
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
doi: 10.1093/molbev/msx281 pubmed: 29077904
Harris S. R. SKA: split kmer analysis toolkit for bacterial genomic epidemiology. Preprint at bioRxiv https://doi.org/10.1101/453142 (2018)
Higgs, C. et al. Optimising genomic approaches for identifying vancomycin-resistant Enterococcus faecium transmission in healthcare settings. Nat. Commun. 13, 509 (2022).
doi: 10.1038/s41467-022-28156-4 pubmed: 35082278 pmcid: 8792028
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
doi: 10.1093/bioinformatics/bts565 pubmed: 23060610 pmcid: 3516142
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
doi: 10.1093/bioinformatics/btab705 pubmed: 34623391 pmcid: 8652018
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
doi: 10.1093/bioinformatics/bty633 pubmed: 30016406

Auteurs

Ouli Xie (O)

Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Monash Infectious Diseases, Monash Health, Melbourne, VIC, Australia.

Cameron Zachreson (C)

School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, Australia.

Gerry Tonkin-Hill (G)

Department of Biostatistics, University of Oslo, Oslo, Norway.

David J Price (DJ)

Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia.

Jake A Lacey (JA)

Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.

Jacqueline M Morris (JM)

Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.

Malcolm I McDonald (MI)

Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.

Asha C Bowen (AC)

Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, WA, Australia.

Philip M Giffard (PM)

Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
Faculty of Health, Charles Darwin University, Darwin, NT, Australia.

Bart J Currie (BJ)

Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia.

Jonathan R Carapetis (JR)

Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, WA, Australia.

Deborah C Holt (DC)

Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.

Stephen D Bentley (SD)

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.

Mark R Davies (MR)

Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.

Steven Y C Tong (SYC)

Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia. steven.tong@unimelb.edu.au.
Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia. steven.tong@unimelb.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH