Overlapping Streptococcus pyogenes and Streptococcus dysgalactiae subspecies equisimilis household transmission and mobile genetic element exchange.
Streptococcus pyogenes
/ genetics
Streptococcal Infections
/ transmission
Humans
Streptococcus
/ genetics
Interspersed Repetitive Sequences
/ genetics
Gene Transfer, Horizontal
Australia
Genome, Bacterial
/ genetics
Female
Male
Child
Family Characteristics
Adult
Child, Preschool
Adolescent
Longitudinal Studies
Drug Resistance, Bacterial
/ genetics
Young Adult
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
24 Apr 2024
24 Apr 2024
Historique:
received:
12
01
2024
accepted:
12
04
2024
medline:
25
4
2024
pubmed:
25
4
2024
entrez:
24
4
2024
Statut:
epublish
Résumé
Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.
Identifiants
pubmed: 38658529
doi: 10.1038/s41467-024-47816-1
pii: 10.1038/s41467-024-47816-1
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3477Subventions
Organisme : Wellcome Trust
ID : 206194
Pays : United Kingdom
Informations de copyright
© 2024. The Author(s).
Références
Brandt, C. M. & Spellerberg, B. Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin. Infect. Dis. 49, 766–772 (2009).
doi: 10.1086/605085
pubmed: 19635028
Wiegele, S. et al. The epidemiology of superficial streptococcal A (impetigo and pharyngitis) infections in Australia: a systematic review. PLoS ONE 18, e0288016 (2023).
doi: 10.1371/journal.pone.0288016
pubmed: 38033025
pmcid: 10688633
Boyd, R. et al. High burden of invasive group A streptococcal disease in the Northern Territory of Australia. Epidemiol. Infect. 144, 1018–1027 (2016).
doi: 10.1017/S0950268815002010
pubmed: 26364646
Wright, C. M. et al. Increasing incidence of invasive group A streptococcal disease in Western Australia, particularly among Indigenous people. Med. J. Aust. 215, 36–41 (2021).
doi: 10.5694/mja2.51117
pubmed: 34091892
May, P. J., Bowen, A. C. & Carapetis, J. R. The inequitable burden of group A streptococcal diseases in indigenous Australians. Med. J. Aust. 205, 201–203 (2016).
doi: 10.5694/mja16.00400
pubmed: 27581260
Wright, C. M. et al. Invasive infections caused by lancefield groups C/G and A Streptococcus, Western Australia, Australia, 2000-2018. Emerg. Infect. Dis. 28, 2190–2197 (2022).
doi: 10.3201/eid2811.220029
pubmed: 36285885
pmcid: 9622247
Haidan, A. et al. Pharyngeal carriage of group C and group G streptococci and acute rheumatic fever in an Aboriginal population. Lancet 356, 1167–1169 (2000).
doi: 10.1016/S0140-6736(00)02765-3
pubmed: 11030302
Sikder, S. et al. Group G Streptococcus induces an autoimmune carditis mediated by interleukin 17A and interferon γ in the Lewis rat model of rheumatic heart disease. J. Infect. Dis. 218, 324–335 (2017).
doi: 10.1093/infdis/jix637
Oppegaard, O. et al. Streptococcus dysgalactiae bloodstream infections, Norway, 1999-2021. Emerg. Infect. Dis. 29, 260–267 (2023).
doi: 10.3201/eid2902.221218
pubmed: 36692331
pmcid: 9881787
Wajima, T. et al. Molecular characterization of invasive Streptococcus dysgalactiae subsp. equisimilis, Japan. Emerg. Infect. Dis. 22, 247–254 (2016).
doi: 10.3201/eid2202.141732
pubmed: 26760778
pmcid: 4734521
McMillan, D. J. et al. Population genetics of Streptococcus dysgalactiae subspecies equisimilis reveals widely dispersed clones and extensive recombination. PLoS ONE 5, e11741 (2010).
doi: 10.1371/journal.pone.0011741
pubmed: 20668530
pmcid: 2909212
McNeilly, C. L. & McMillan, D. J. Horizontal gene transfer and recombination in Streptococcus dysgalactiae subsp. equisimilis. Front. Microbiol. 5, 676 (2014).
doi: 10.3389/fmicb.2014.00676
pubmed: 25566202
pmcid: 4266089
Xie, O. et al. Inter-species gene flow drives ongoing evolution of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis. Nat. Commun. 15, 2286 (2024).
doi: 10.1038/s41467-024-46530-2
pubmed: 38480728
pmcid: 10937727
Belotserkovsky, I. et al. Functional analysis of the quorum-sensing streptococcal invasion locus (sil). PLoS Pathog. 5, e1000651 (2009).
doi: 10.1371/journal.ppat.1000651
pubmed: 19893632
pmcid: 2766830
Armstrong, B. D. et al. Identification of a two-component Class IIb bacteriocin in Streptococcus pyogenes by recombinase-based in vivo expression technology. Sci. Rep. 6, 36233 (2016).
doi: 10.1038/srep36233
pubmed: 27808235
pmcid: 5093712
Heng, N. C. K. et al. Dysgalacticin: a novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis. Microbiology 152, 1991–2001 (2006).
doi: 10.1099/mic.0.28823-0
pubmed: 16804174
Lacey, J. A. et al. Evaluating the role of asymptomatic throat carriage of Streptococcus pyogenes in impetigo transmission in remote Aboriginal communities in Northern Territory, Australia: a retrospective genomic analysis. Lancet Microbe 4, E524–E533 (2023).
McDonald, M., Towers, R. J., Andrews, R. M., Carapetis, J. R. & Currie, B. J. Epidemiology of Streptococcus dysgalactiae subsp. equisimilis in tropical communities, Northern Australia. Emerg. Infect. Dis. 13, 1694–1700 (2007).
doi: 10.3201/eid1311.061258
pubmed: 18217553
pmcid: 3375807
McDonald, M. I. et al. Low rates of streptococcal pharyngitis and high rates of pyoderma in Australian aboriginal communities where acute rheumatic fever is hyperendemic. Clin. Infect. Dis. 43, 683–689 (2006).
doi: 10.1086/506938
pubmed: 16912939
Khedkar, S. et al. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res. 50, 3155–3168 (2022).
doi: 10.1093/nar/gkac163
pubmed: 35323968
pmcid: 8989519
Iannelli, F. et al. Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes. Front. Microbiol. 5, 687 (2014).
doi: 10.3389/fmicb.2014.00687
pubmed: 25538698
pmcid: 4260502
Sumby, P. et al. Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J. Infect. Dis. 192, 771–782 (2005).
doi: 10.1086/432514
pubmed: 16088826
Steer, A. C. et al. Prospective surveillance of streptococcal sore throat in a tropical country. Pediatr. Infect. Dis. J. 28, 477–482 (2009).
doi: 10.1097/INF.0b013e318194b2af
pubmed: 19483515
Jose, J. J. M. et al. Streptococcal group A, C and G pharyngitis in school children: a prospective cohort study in Southern India. Epidemiol. Infect. 146, 848–853 (2018).
doi: 10.1017/S095026881800064X
pubmed: 29616606
Turner, J. C., Hayden, F. G., Lobo, M. C., Ramirez, C. E. & Murren, D. Epidemiologic evidence for Lancefield group C beta-hemolytic streptococci as a cause of exudative pharyngitis in college students. J. Clin. Microbiol. 35, 1–4 (1997).
doi: 10.1128/jcm.35.1.1-4.1997
pubmed: 8968872
pmcid: 229503
Tonkin-Hill, G. et al. Pneumococcal within-host diversity during colonization, transmission and treatment. Nat. Microbiol. 7, 1791–1804 (2022).
doi: 10.1038/s41564-022-01238-1
pubmed: 36216891
pmcid: 9613479
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes De Novo assembler. Curr. Protoc. Bioinform. 70, e102 (2020).
doi: 10.1002/cpbi.102
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
doi: 10.1093/bioinformatics/btu153
pubmed: 24642063
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).
doi: 10.1186/s13059-019-1891-0
pubmed: 31779668
pmcid: 6883579
Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 3, 124 (2018).
doi: 10.12688/wellcomeopenres.14826.1
pubmed: 30345391
pmcid: 6192448
Lees, J. A. et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 29, 304–316 (2019).
doi: 10.1101/gr.241455.118
pubmed: 30679308
pmcid: 6360808
Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–w50 (2023).
doi: 10.1093/nar/gkad344
pubmed: 37140036
pmcid: 10320115
Davies, M. R. et al. Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nat. Genet. 51, 1035–1043 (2019).
doi: 10.1038/s41588-019-0417-8
pubmed: 31133745
pmcid: 6650292
Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21, 180 (2020).
doi: 10.1186/s13059-020-02090-4
pubmed: 32698896
pmcid: 7376924
Jespersen, M. G., Hayes, A. & Davies, M. R. Corekaburra: pan-genome post-processing using core gene synteny. J. Open Source Softw. 7, 4910 (2022).
doi: 10.21105/joss.04910
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
doi: 10.1093/molbev/msaa015
pubmed: 32011700
pmcid: 7182206
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
doi: 10.1093/molbev/msx281
pubmed: 29077904
Harris S. R. SKA: split kmer analysis toolkit for bacterial genomic epidemiology. Preprint at bioRxiv https://doi.org/10.1101/453142 (2018)
Higgs, C. et al. Optimising genomic approaches for identifying vancomycin-resistant Enterococcus faecium transmission in healthcare settings. Nat. Commun. 13, 509 (2022).
doi: 10.1038/s41467-022-28156-4
pubmed: 35082278
pmcid: 8792028
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
doi: 10.1093/bioinformatics/bts565
pubmed: 23060610
pmcid: 3516142
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
doi: 10.1093/bioinformatics/btab705
pubmed: 34623391
pmcid: 8652018
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
doi: 10.1093/bioinformatics/bty633
pubmed: 30016406