Functional in vitro diversity of an intrinsically disordered plant protein during freeze-thawing is encoded by its structural plasticity.


Journal

Protein science : a publication of the Protein Society
ISSN: 1469-896X
Titre abrégé: Protein Sci
Pays: United States
ID NLM: 9211750

Informations de publication

Date de publication:
May 2024
Historique:
revised: 09 03 2024
received: 25 10 2023
accepted: 31 03 2024
medline: 25 4 2024
pubmed: 25 4 2024
entrez: 25 4 2024
Statut: ppublish

Résumé

Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.

Identifiants

pubmed: 38659213
doi: 10.1002/pro.4989
doi:

Substances chimiques

Arabidopsis Proteins 0
Intrinsically Disordered Proteins 0
COR15 protein, Arabidopsis 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e4989

Subventions

Organisme : Trond Mohn Foundation
ID : BFS2017TMT01
Organisme : National Collaborative Research Infrastructure Strategy
ID : NDF8141
Organisme : National Collaborative Research Infrastructure Strategy
ID : NDF6449
Organisme : Spallation Neutron Source
ID : 30279.1

Informations de copyright

© 2024 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.

Références

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. Gromacs: high performance molecular simulations through multi‐level parallelism from laptops to supercomputers. SoftwareX. 2015;1‐2:19–25.
Arbe A, Pomposo JA, Moreno AJ, LoVerso F, González‐Burgos M, Asenjo‐Sanz I, et al. Structure and dynamics of single‐chain nano‐particles in solution. Polymer. 2016;105:532–544.
Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF. Constitutive expression of the cold‐regulated Arabidopsis thaliana cor15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A. 1996;93(23):13404–13409.
Banks A, Qin S, Weiss KL, Stanley CB, Zhou HX. 2018. Intrinsically disordered protein exhibits both compaction and expansion under macromolecular crowding. Biophys J. 2018;114(5):1067–1079.
Bartels D, Salamini F. Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol. 2001;127(4):1346–1353.
Battaglia M, Olvera‐Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 2008;148(1):6–24.
Belott C, Janis B, Menze MA. Liquid‐liquid phase separation promotes animal desiccation tolerance. Proc Natl Acad Sci U S A. 2020;117(44):27676–27684.
Boddington KF, Graether SP. Binding of a Vitis riparia dehydrin to DNA. Plant Sci. 2019;287:110172.
Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, et al. Extreme disorder in an ultrahigh‐affinity protein complex. Nature. 2018;555(7694):61–66.
Bremer A, Kent B, Hauß T, Thalhammer A, Yepuri NR, Darwish TA, et al. Intrinsically disordered stress protein COR15A resides at the membrane surface during dehydration. Biophys J. 2017;113(3):572–579.
Bremer A, Wolff M, Thalhammer A, Hincha DK. Folding of intrinsically disordered plant LEA proteins is driven by glycerol‐induced crowding and the presence of membranes. FEBS J. 2017;284(6):919–936.
Buck M. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys. 1998;31(3):297–355.
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101.
Chakrabortee S, Tripathi R, Watson M, Schierle GS, Kurniawan DP, Kaminski CF, et al. Intrinsically disordered proteins as molecular shields. Mol Biosyst. 2012;8(1):210–219.
Chen J, Li N, Wang X, Meng X, Cui X, Chen Z, et al. Late embryogenesis abundant (LEA) gene family in Salvia miltiorrhiza: identification, expression analysis, and response to drought stress. Plant Signal Behav. 2021;16(5):1891769.
Chen Y‐H, Yang JT, Martinez HM. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972;11(22):4120–4131.
Cheng Z, Zhang X, Yao W, Zhao K, Liu L, Fan G, et al. Genome‐wide search and structural and functional analyses for late embryogenesis‐abundant (LEA) gene family in poplar. BMC Plant Biol. 2021;21(1):110.
Cuevas‐Velazquez CL, Saab‐Rincón G, Reyes JL, Covarrubias AA. The unstructured N‐terminal region of Arabidopsis group 4 late embryogenesis abundant (LEA) proteins is required for folding and for chaperone‐like activity under water deficit. J Biol Chem. 2016;291(20):10893–10903.
Davis IW, Leaver‐Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. Molprobity: all‐atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35:W375–W383.
Ding M, Wang L, Zhan W, Sun G, Jia X, Chen S, et al. Genome‐wide identification and expression analysis of late embryogenesis abundant protein‐encoding genes in rye (Secale cereale L.). PLoS One. 2021;16(4):e0249757.
Dirk LMA, Abdel CG, Ahmad I, Neta ICS, Pereira CC, Pereira FECB, et al. Late embryogenesis abundant protein‐client protein interactions. Plants (Basel). 2020;9(7):814.
Dure L 3rd. A repeating 11‐mer amino acid motif and plant desiccation. Plant J. 1993;3(3):363–369.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103(19):8577–8593.
Fuxreiter M, Tompa P. Fuzzy complexes: a more stochastic view of protein function. Adv Exp Med Biol. 2012;725:1–14.
Garabagi F, Gilbert E, Loos A, McLean MD, Hall JC. Utility of the p19 suppressor of gene‐silencing protein for production of therapeutic antibodies in Nicotiana expression hosts. Plant Biotechnol J. 2012;10(9):1118–1128.
Garvey CJ, Lenné T, Koster KL, Kent B, Bryant G. Phospholipid membrane protection by sugar molecules during dehydration‐insights into molecular mechanisms using scattering techniques. Int J Mol Sci. 2013;14(4):8148–8163.
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook. Springer protocols handbooks. New Jersey: Humana Press; 2005. p. 571–607.
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci. 2021;78(19–20):6365–6394.
Ginsawaeng O, Heise C, Sangwan R, Karcher D, Hernández‐Sánchez IE, Sampathkumar A, et al. Subcellular localization of seed‐expressed LEA_4 proteins reveals liquid‐liquid phase separation for LEA9 and for LEA48 homo‐ and LEA42‐LEA48 heterodimers. Biomolecules. 2021;11(12).
González‐Burgos M, Asenjo‐Sanz I, Pomposo JA, Radulescu A, Ivanova O, Pasini S, et al. Structure and dynamics of irreversible single‐chain nanoparticles in dilute solution. A Neutron Scattering Investigation Macromolecules. 2020;53(18):8068–8082.
Grefen C, Blatt MR. A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBIFC). Biotechniques. 2012;53(5):311–314.
Hammouda B. A new Guinier‐Porod model. J Appl Cryst. 2010;43:716–719.
Hammouda B. Small‐angle scattering from branched polymers. Macromol Theory Simul. 2012;21(6):372–381.
Hand SC, Menze MA, Toner M, Boswell L, Moore D. LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol. 2011;73:115–134.
Hara M, Endo T, Kamiya K, Kameyama A. The role of hydrophobic amino acids of K‐segments in the cryoprotection of lactate dehydrogenase by dehydrins. J Plant Physiol. 2017;210:18–23.
Hara M, Shinoda Y, Tanaka Y, Kuboi T. DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ. 2009;32(5):532–541.
Haymet ADJ, Ward LG, Harding MM. Winter flounder “antifreeze” proteins: synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen‐bonding interactions. J Am Chem Soc. 1999;121(5):941–948.
He C, Liu X, Teixeira da Silva JA, Wang H, Peng T, Zhang M, et al. Characterization of LEA genes in Dendrobium officinale and one gene in induction of callus. J Plant Physiol. 2021;258‐259:153356.
Heller WT, Cuneo M, Debeer‐Schmitt L, Do C, He L, Heroux L, et al. The suite of small‐angle neutron scattering instruments at oak Ridge National Laboratory. J Appl Cryst. 2018;51:242–248.
Hernández‐Sánchez IE, Martynowicz DM, Rodríguez‐Hernández AA, Pérez‐Morales MB, Graether SP, Jiménez‐Bremont JF. A dehydrin‐dehydrin interaction: the case of SK3 from Opuntia streptacantha. Front Plant Sci. 2014;5.
Hernández‐Sánchez IE, Maruri‐López I, Graether SP, Jiménez‐Bremont JF. In vivo evidence for homo‐ and heterodimeric interactions of Arabidopsis thaliana dehydrins AtCOR47, AtERD10, and AtRAB18. Sci Rep. 2017;7(1):17036.
Hernández‐Sánchez IE, Maruri‐López I, Martinez‐Martinez C, Janis B, Jiménez‐Bremont JF, Covarrubias AA, et al. LEAfing through literature: late embryogenesis abundant proteins coming of age‐achievements and perspectives. J Exp Bot. 2022;73(19):6525–6546.
Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load‐balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–447.
Hincha DK, Zuther E, Hellwege EM, Heyer AG. Specific effects of fructo‐ and gluco‐oligosaccharides in the preservation of liposomes during drying. Glycobiology. 2002;12(2):103–110.
Hughes SL, Schart V, Malcolmson J, Hogarth KA, Martynowicz DM, Tralman‐Baker E, et al. The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiol. 2013;163(3):1376–1386.
Janis B, Belott C, Brockman T, Menze MA. Functional and conformational plasticity of an animal group 1 LEA protein. Biomolecules. 2022;12(3).
Jin X, Cao D, Wang Z, Ma L, Tian K, Liu Y, et al. Genome‐wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses. Sci Rep. 2019;9(1):14123.
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–935.
Jorgensen WL, Maxwell DS, Tirado‐Rives J. Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118(45):11225–11236.
Jorgensen WL, Tirado‐Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988;110(6):1657–1666.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589.
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers. 1983;22(12):2577–2637.
Kaminski GA, Friesner RA, Tirado‐Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS‐AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B. 2001;105(28):6474–6487.
Karnik A, Karnik R, Grefen C. SDM‐assist software to design site‐directed mutagenesis primers introducing “silent” restriction sites. BMC Bioinf. 2013;14(1):105.
Knox‐Brown P, Rindfleisch T, Günther A, Balow K, Bremer A, Walther D, et al. Similar yet different‐structural and functional diversity among Arabidopsis thaliana LEA_4 proteins. Int J Mol Sci. 2020;21(8).
Kosmacz M, Skirycz A. The isolation of stress granules from plant material. Curr Protoc Plant Biol. 2020;5(3):e20118.
Kovacs D, Agoston B, Tompa P. Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav. 2008;3(9):710–713.
Krasensky J, Jonak C. Drought, salt, and temperature stress‐induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63(4):1593–1608.
Kühnel K, Jarchau T, Wolf E, Schlichting I, Walter U, Wittinghofer A, et al. The VASP tetramerization domain is a right‐handed coiled coil based on a 15‐residue repeat. Proc Natl Acad Sci U S A. 2004;101(49):17027–17032.
Kushwaha R, Downie AB, Payne CM. Uses of phage display in agriculture: sequence analysis and comparative modeling of late embryogenesis abundant client proteins suggest protein‐nucleic acid binding functionality. Comput Math Methods Med. 2013;2013:470390.
Li C, Yan C, Sun Q, Wang J, Yuan C, Mou Y, et al. Proteomic profiling of Arachis hypogaea in response to drought stress and overexpression of AhLEA2 improves drought tolerance. Plant Biol (Stuttg). 2022;24(1):75–84.
Lin C, Thomashow MF. A cold‐regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun. 1992;183(3):1103–1108.
Liu H, Xing M, Yang W, Mu X, Wang X, Lu F, et al. Genome‐wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum). Sci Rep. 2019;9(1):13375.
Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, et al. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins. 2003;50(3):437–450.
Lupas A. Predicting coiled‐coil regions in proteins. Curr Opin Struct Biol. 1997;7(3):388–393.
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–682.
Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992;13(8):952–962.
Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, et al. Analysis of molecular recognition features (MoRFs). J Mol Biol. 2006;362(5):1043–1059.
Mozafari MR, Mazaheri E, Dormiani K. Simple equations pertaining to the particle number and surface area of metallic, polymeric, lipidic and vesicular nanocarriers. Sci Pharm. 2021;89(2).
Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T. Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol. 2007;144(1):513–523.
Navarro‐Retamal C, Bremer A, Alzate‐Morales J, Caballero J, Hincha DK, González W, et al. Molecular dynamics simulations and CD spectroscopy reveal hydration‐induced unfolding of the intrinsically disordered LEA proteins COR15A and COR15B from Arabidopsis thaliana. Phys Chem Chem Phys. 2016;18(37):25806–25816.
Navarro‐Retamal C, Bremer A, Ingólfsson HI, Alzate‐Morales J, Caballero J, Thalhammer A, et al. Folding and lipid composition determine membrane interaction of the disordered protein COR15A. Biophys J. 2018;115:968–980.
Ohkubo T, Kameyama A, Kamiya K, Kondo M, Hara M. F‐segments of Arabidopsis dehydrins show cryoprotective activities for lactate dehydrogenase depending on the hydrophobic residues. Phytochemistry. 2020;173:112300.
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–7190.
Provencher SW. CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun. 1982;27(3):229–242.
Roy A, Kucukural A, Zhang Y. I‐TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725–738.
Sales M, Plecs JJ, Holton JM, Alber T. Structure of a designed, right‐handed coiled‐coil tetramer containing all biological amino acids. Protein Sci. 2007;16(10):2224–2232.
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815.
Schägger H, von Jagow G. Tricine‐sodium dodecyl sulfate‐polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166(2):368–379.
Schuck P. Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J. 2000;78(3):1606–1619.
Shahane G, Ding W, Palaiokostas M, Orsi M. Physical properties of model biological lipid bilayers: insights from all‐atom molecular dynamics simulations. J Mol Model. 2019;25(3):76.
Shou K, Bremer A, Rindfleisch T, Knox‐Brown P, Hirai M, Rekas A, et al. Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity—an x‐ray and light scattering study. Phys Chem Chem Phys. 2019;21(34):18727–18740.
Smith MA, Graether SP. The disordered dehydrin and its role in plant protection: a biochemical perspective. Biomolecules. 2022;12(2).
Sottini A, Borgia A, Borgia MB, Bugge K, Nettels D, Chowdhury A, et al. Polyelectrolyte interactions enable rapid association and dissociation in high‐affinity disordered protein complexes. Nat Commun. 2020;11(1):5736.
Sowemimo OT, Knox‐Brown P, Borcherds W, Rindfleisch T, Thalhammer A, Daughdrill GW. Conserved glycines control disorder and function in the cold‐regulated protein, COR15A. Biomolecules. 2019;9(3):84.
Stadler AM, van Eijck L, Demmel F, Artmann G. Macromolecular dynamics in red blood cells investigated using neutron spectroscopy. J R Soc Interface. 2011;8(57):590–600.
Stetefeld J, Jenny M, Schulthess T, Landwehr R, Engel J, Kammerer RA. Crystal structure of a naturally occurring parallel right‐handed coiled coil tetramer. Nat Struct Biol. 2000;7(9):772–776.
Studier FW. Protein production by auto‐induction in high‐density shaking cultures. Protein Expr Purif. 2005;41(1):207–234.
Thalhammer A, Bryant G, Sulpice R, Hincha DK. Disordered COR15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in‐vivo. Plant Physiol. 2014;166:190–201.
Thalhammer A, Hincha DK. A mechanistic model of COR15 protein function in plant freezing tolerance: integration of structural and functional characteristics. Plant Signal Behav. 2014;9(12):e977722.
Thalhammer A, Pagter M, Hincha DK, Zuther E. Measuring freezing tolerance of leaves and rosettes: electrolyte leakage and chlorophyll fluorescence assays. In: Hincha DK, Zuther E, editors. Plant cold acclimation: methods and protocols. New York: Springer; 2020. p. 9–21.
Theillet FX, Binolfi A, Frembgen‐Kesner T, Hingorani K, Sarkar M, Kyne C, et al. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev. 2014;114(13):6661–6714.
Timasheff SN. Protein‐solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci U S A. 2002;99(15):9721–9726.
Touw WG, Baakman C, Black J, te Beek TA, Krieger E, Joosten RP, et al. A series of PDB‐related databanks for everyday needs. Nucleic Acids Res. 2015;43:D364–D368.
Tunnacliffe A, Hincha DK, Leprince O, Macherel D. LEA proteins: versatility of form and function. In: Cerda E, editor. Dormancy and resistance in harsh environments. Berlin: Springer; 2010. p. 91–108.
Tunnacliffe A, Wise MJ. The continuing conundrum of the LEA proteins. Naturwissenschaften. 2007;94(10):791–812.
Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal Behav. 2007;2(3):135–138.
Upadhyaya G, Das A, Basu C, Agarwal T, Basak C, Chakraborty C, et al. Multiple copies of a novel amphipathic α‐helix forming segment in Physcomitrella patens dehydrin play a key role in abiotic stress mitigation. J Biol Chem. 2021;296:100596.
Vagenende V, Yap MG, Trout BL. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry. 2009;48(46):11084–11096.
van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. The HADDOCK2.2 web server: user‐friendly integrative modeling of biomolecular complexes. J Mol Biol. 2016;428(4):720–725.
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Res. 2022;50(D1):D439–D444.
Verslues PE, Agarwal M, Katiyar‐Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006;45(4):523–539.
Virtanen SI, Kiirikki AM, Mikula KM, Iwaï H, Ollila OHS. Heterogeneous dynamics in partially disordered proteins. Phys Chem Chem Phys. 2020;22(37):21185–21196.
Walther D. WebMol—a Java‐based PDB viewer. Trends Biochem Sci. 1997;22(7):274–275.
Webb MS, Green BR. Biochemical and biophysical properties of thylakoid acyl lipids. Biochim Biophys Acta Bioenerg. 1991;1060(2):133–158.
Xing S, Wallmeroth N, Berendzen KW, Grefen C. Techniques for the analysis of protein‐protein interactions in vivo. Plant Physiol. 2016;171(2):727–758.
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I‐TASSER suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8.
Yokoyama T, Ohkubo T, Kamiya K, Hara M. Cryoprotective activity of Arabidopsis KS‐type dehydrin depends on the hydrophobic amino acids of two active segments. Arch Biochem Biophys. 2020;691:108510.
Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. Agrobacterium‐mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 2006;1(2):641–646.
Zinkham WH, Holtzman NA, Isensee H. The molecular size of lactate dehydrogenase isozymes in mature testes. Biochim Biophys Acta (BBA) ‐ Protein Struct. 1968;160(2):172–177.
Zuther E, Schaarschmidt S, Fischer A, Erban A, Pagter M, Mubeen U, et al. Molecular signatures associated with increased freezing tolerance due to low temperature memory in Arabidopsis. Plant Cell Environ. 2019;42(3):854–873.

Auteurs

Itzell Hernández-Sánchez (I)

Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany.

Tobias Rindfleisch (T)

Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
Physical Biochemistry, University of Potsdam, Potsdam, Germany.
Department of Chemistry, University of Bergen, Bergen, Norway.
Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.

Jessica Alpers (J)

Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany.

Martin Dulle (M)

Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, Jülich, Germany.

Christopher J Garvey (CJ)

Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Garching, Germany.

Patrick Knox-Brown (P)

Physical Biochemistry, University of Potsdam, Potsdam, Germany.

Markus S Miettinen (MS)

Department of Chemistry, University of Bergen, Bergen, Norway.
Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.

Gergely Nagy (G)

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Julio M Pusterla (JM)

Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, Jülich, Germany.

Agata Rekas (A)

Australian Nuclear Science and Technology Organization (ANSTO), Kirrawee, New South Wales, Australia.

Keyun Shou (K)

Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, Jülich, Germany.
Australian Nuclear Science and Technology Organization (ANSTO), Kirrawee, New South Wales, Australia.
Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany.

Andreas M Stadler (AM)

Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, Jülich, Germany.
Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany.

Dirk Walther (D)

Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany.

Martin Wolff (M)

Physical Biochemistry, University of Potsdam, Potsdam, Germany.

Ellen Zuther (E)

Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany.

Anja Thalhammer (A)

Physical Biochemistry, University of Potsdam, Potsdam, Germany.

Articles similaires

alpha-Synuclein Humans Animals Mice Lewy Body Disease
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant

Classifications MeSH