Prediction-error-dependent processing of immediate and delayed positive feedback.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
27 Apr 2024
Historique:
received: 05 12 2023
accepted: 22 04 2024
medline: 28 4 2024
pubmed: 28 4 2024
entrez: 27 4 2024
Statut: epublish

Résumé

Learning often involves trial-and-error, i.e. repeating behaviours that lead to desired outcomes, and adjusting behaviour when outcomes do not meet our expectations and thus lead to prediction errors (PEs). PEs have been shown to be reflected in the reward positivity (RewP), an event-related potential (ERP) component between 200 and 350 ms after performance feedback which is linked to striatal processing and assessed via electroencephalography (EEG). Here we show that this is also true for delayed feedback processing, for which a critical role of the hippocampus has been suggested. We found a general reduction of the RewP for delayed feedback, but the PE was similarly reflected in the RewP and the later P300 for immediate and delayed positive feedback, while no effect was found for negative feedback. Our results suggest that, despite processing differences between immediate and delayed feedback, positive PEs drive feedback processing and learning irrespective of delay.

Identifiants

pubmed: 38678065
doi: 10.1038/s41598-024-60328-8
pii: 10.1038/s41598-024-60328-8
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9674

Informations de copyright

© 2024. The Author(s).

Références

Hajcak, G., Moser, J. S., Holroyd, C. B. & Simons, R. F. It’s worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology 44, 905–912. https://doi.org/10.1111/j.1469-8986.2007.00567.x (2007).
doi: 10.1111/j.1469-8986.2007.00567.x pubmed: 17666029
Höltje, G. & Mecklinger, A. Electrophysiological reward signals predict episodic memory for immediate and delayed positive feedback events. Brain Res. 1701, 64–74. https://doi.org/10.1016/j.brainres.2018.07.011 (2018).
doi: 10.1016/j.brainres.2018.07.011 pubmed: 30017716
Holroyd, C. B., Larsen, J. T. & Cohen, J. D. Context dependence of the event-related brain potential associated with reward and punishment. Psychophysiology 41, 245–253. https://doi.org/10.1111/j.1469-8986.2004.00152.x (2004).
doi: 10.1111/j.1469-8986.2004.00152.x pubmed: 15032989
Delgado, M. R. Reward-related responses in the human striatum. Ann. N. Y. Acad. Sci. 1104, 70–88. https://doi.org/10.1196/annals.1390.002 (2007).
doi: 10.1196/annals.1390.002 pubmed: 17344522
Walsh, M. M. & Anderson, J. R. Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neurosci. Biobehav. Rev. 36, 1870–1884. https://doi.org/10.1016/j.neubiorev.2012.05.008 (2012).
doi: 10.1016/j.neubiorev.2012.05.008 pubmed: 22683741 pmcid: 3432149
Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500. https://doi.org/10.1146/annurev.neuro.23.1.473 (2000).
doi: 10.1146/annurev.neuro.23.1.473 pubmed: 10845072
Zaghloul, K. A. et al. Human substantia Nigra neurons encode unexpected financial rewards. Science 323, 1496–1499. https://doi.org/10.1126/science.1167342 (2009).
doi: 10.1126/science.1167342 pubmed: 19286561 pmcid: 2839450
Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: An update. Trends Neurosci. 30, 194–202. https://doi.org/10.1016/j.tins.2007.03.006 (2007).
doi: 10.1016/j.tins.2007.03.006 pubmed: 17408759
Haber, S. N. & Knutson, B. The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26. https://doi.org/10.1038/npp.2009.129 (2010).
doi: 10.1038/npp.2009.129 pubmed: 19812543
Foerde, K., Race, E., Verfaellie, M. & Shohamy, D. A role for the medial temporal lobe in feedback-driven learning: evidence from amnesia. J. Neurosci. 33, 5698–5704. https://doi.org/10.1523/JNEUROSCI.5217-12.2013 (2013).
doi: 10.1523/JNEUROSCI.5217-12.2013 pubmed: 23536083 pmcid: 3865542
Foerde, K. & Shohamy, D. The role of the basal ganglia in learning and memory: insight from Parkinson’s disease. Neurobiol. Learn. Mem. 96, 624–636. https://doi.org/10.1016/j.nlm.2011.08.006 (2011).
doi: 10.1016/j.nlm.2011.08.006 pubmed: 21945835 pmcid: 3772079
Jocham, G. et al. Reward-guided learning with and without causal attribution. Neuron 90, 177–190. https://doi.org/10.1016/j.neuron.2016.02.018 (2016).
doi: 10.1016/j.neuron.2016.02.018 pubmed: 26971947 pmcid: 4826429
Lighthall, N. R., Pearson, J. M., Huettel, S. A. & Cabeza, R. Feedback-based learning in aging: Contributions and trajectories of change in striatal and hippocampal systems. J. Neurosci. 38, 8453–8462. https://doi.org/10.1523/JNEUROSCI.0769-18.2018 (2018).
doi: 10.1523/JNEUROSCI.0769-18.2018 pubmed: 30120208 pmcid: 6158690
Hinneberg, B. M. & Hegele, M. Acting in temporal contexts: On the behavioral and neurophysiological consequences of feedback delays. Neuroscience 486, 91–102. https://doi.org/10.1016/j.neuroscience.2021.06.028 (2022).
doi: 10.1016/j.neuroscience.2021.06.028 pubmed: 34175422
Miltner, W. H., Braun, C. H. & Coles, M. G. Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. J. Cognit. Neurosci. 9, 788–798. https://doi.org/10.1162/jocn.1997.9.6.788 (1997).
doi: 10.1162/jocn.1997.9.6.788
Krigolson, O. E. Event-related brain potentials and the study of reward processing: Methodological considerations. Int. J. Psychophysiol. 132, 175–183. https://doi.org/10.1016/j.ijpsycho.2017.11.007 (2018).
doi: 10.1016/j.ijpsycho.2017.11.007 pubmed: 29154804
Proudfit, G. H. The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology 52, 449–459. https://doi.org/10.1111/psyp.12370 (2015).
doi: 10.1111/psyp.12370 pubmed: 25327938
Baker, T. E. & Holroyd, C. B. Which way do I go? Neural activation in response to feedback and spatial processing in a virtual T-maze. Cereb. Cortex 19, 1708–1722. https://doi.org/10.1093/cercor/bhn223 (2009).
doi: 10.1093/cercor/bhn223 pubmed: 19073622
Holroyd, C. B., Krigolson, O. E. & Lee, S. Reward positivity elicited by predictive cues. NeuroReport 22, 249–252. https://doi.org/10.1097/WNR.0b013e328345441d (2011).
doi: 10.1097/WNR.0b013e328345441d pubmed: 21386699
Holroyd, C. B. & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709. https://doi.org/10.1037/0033-295X.109.4.679 (2002).
doi: 10.1037/0033-295X.109.4.679 pubmed: 12374324
Bellebaum, C. & Daum, I. Learning-related changes in reward expectancy are reflected in the feedback-related negativity. Eur. J. Neurosci. 27, 1823–1835. https://doi.org/10.1111/j.1460-9568.2008.06138.x (2008).
doi: 10.1111/j.1460-9568.2008.06138.x pubmed: 18380674
Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S. & Gibson, J. When is an error not a prediction error? An electrophysiological investigation. Cognit. Affect. Behav. Neurosci. 9, 59–70. https://doi.org/10.3758/CABN.9.1.59 (2009).
doi: 10.3758/CABN.9.1.59
Sambrook, T. D. & Goslin, J. A neural reward prediction error revealed by a meta-analysis of ERPs using great grand averages. Psychol. Bull. 141, 213–235. https://doi.org/10.1037/bul0000006 (2015).
doi: 10.1037/bul0000006 pubmed: 25495239
Burnside, R., Fischer, A. G. & Ullsperger, M. The feedback-related negativity indexes prediction error in active but not observational learning. Psychophysiology 56, e13389. https://doi.org/10.1111/psyp.13389 (2019).
doi: 10.1111/psyp.13389 pubmed: 31054155
Fischer, A. G. & Ullsperger, M. Real and fictive outcomes are processed differently but converge on a common adaptive mechanism. Neuron 79, 1243–1255. https://doi.org/10.1016/j.neuron.2013.07.006 (2013).
doi: 10.1016/j.neuron.2013.07.006 pubmed: 24050408
Höltje, G. & Mecklinger, A. Feedback timing modulates interactions between feedback processing and memory encoding: Evidence from event-related potentials. Cognit. Affect. Behav. Neurosci. 20, 250–264. https://doi.org/10.3758/s13415-019-00765-5 (2020).
doi: 10.3758/s13415-019-00765-5
Hoy, C. W., Steiner, S. C. & Knight, R. T. Single-trial modeling separates multiple overlapping prediction errors during reward processing in human EEG. Commun. Biol. 4, 910. https://doi.org/10.1038/s42003-021-02426-1 (2021).
doi: 10.1038/s42003-021-02426-1 pubmed: 34302057 pmcid: 8302587
Becker, M. P. I., Nitsch, A. M., Miltner, W. H. R. & Straube, T. A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. J. Neurosci. 34, 3005–3012. https://doi.org/10.1523/JNEUROSCI.3684-13.2014 (2014).
doi: 10.1523/JNEUROSCI.3684-13.2014 pubmed: 24553940 pmcid: 6608516
Gehring, W. J. & Willoughby, A. R. The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295, 2279–2282. https://doi.org/10.1126/science.1066893 (2002).
doi: 10.1126/science.1066893 pubmed: 11910116
Foti, D., Weinberg, A., Dien, J. & Hajcak, G. Event-related potential activity in the basal ganglia differentiates rewards from nonrewards: Temporospatial principal components analysis and source localization of the feedback negativity. Hum. Brain Mapp. 32, 2207–2216. https://doi.org/10.1002/hbm.21182 (2011).
doi: 10.1002/hbm.21182 pubmed: 21305664 pmcid: 6870417
Weismüller, B. & Bellebaum, C. Expectancy affects the feedback-related negativity (FRN) for delayed feedback in probabilistic learning. Psychophysiology 53, 1739–1750. https://doi.org/10.1111/psyp.12738 (2016).
doi: 10.1111/psyp.12738 pubmed: 27565454
Weismüller, B., Kullmann, J., Hoenen, M. & Bellebaum, C. Effects of feedback delay and agency on feedback-locked beta and theta power during reinforcement learning. Psychophysiology 56, e13428. https://doi.org/10.1111/psyp.13428 (2019).
doi: 10.1111/psyp.13428 pubmed: 31245849
Peterburs, J., Kobza, S. & Bellebaum, C. Feedback delay gradually affects amplitude and valence specificity of the feedback-related negativity (FRN). Psychophysiology 53, 209–215. https://doi.org/10.1111/psyp.12560 (2016).
doi: 10.1111/psyp.12560 pubmed: 26459164
Weinberg, A., Luhmann, C. C., Bress, J. N. & Hajcak, G. Better late than never? The effect of feedback delay on ERP indices of reward processing. Cognit. Affect. Behav. Neurosci. 12, 671–677. https://doi.org/10.3758/s13415-012-0104-z (2012).
doi: 10.3758/s13415-012-0104-z
Arbel, Y., Hong, L., Baker, T. E. & Holroyd, C. B. It’s all about timing: An electrophysiological examination of feedback-based learning with immediate and delayed feedback. Neuropsychologia 99, 179–186. https://doi.org/10.1016/j.neuropsychologia.2017.03.003 (2017).
doi: 10.1016/j.neuropsychologia.2017.03.003 pubmed: 28284986
Kimura, K. & Kimura, M. Temporal prediction restores the evaluative processing of delayed action feedback. NeuroReport 27, 1061–1067. https://doi.org/10.1097/WNR.0000000000000657 (2016).
doi: 10.1097/WNR.0000000000000657 pubmed: 27513200
Frank, M. J., Seeberger, L. C. & O’reilly, R. C. By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943. https://doi.org/10.1126/science.1102941 (2004).
doi: 10.1126/science.1102941 pubmed: 15528409
Weismüller, B. et al. Effects of feedback delay on learning from positive and negative feedback in patients with Parkinson’s disease off medication. Neuropsychologia 117, 46–54. https://doi.org/10.1016/j.neuropsychologia.2018.05.010 (2018).
doi: 10.1016/j.neuropsychologia.2018.05.010 pubmed: 29758227
Dickerson, K. C., Li, J. & Delgado, M. R. Parallel contributions of distinct human memory systems during probabilistic learning. NeuroImage 55, 266–276. https://doi.org/10.1016/j.neuroimage.2010.10.080 (2011).
doi: 10.1016/j.neuroimage.2010.10.080 pubmed: 21056678
Kirsch, F., Kirschner, H., Fischer, A. G., Klein, T. A. & Ullsperger, M. Disentangling performance-monitoring signals encoded in feedback-related EEG dynamics. NeuroImage. 257, 119322. https://doi.org/10.1016/j.neuroimage.2022.119322 (2022).
doi: 10.1016/j.neuroimage.2022.119322 pubmed: 35577025
Albrecht, C. & Bellebaum, C. Disentangling effects of expectancy, accuracy, and empathy on the processing of observed actions. Psychophysiology 58, 13883. https://doi.org/10.1111/psyp.13883 (2021).
doi: 10.1111/psyp.13883
Wang, J., Chen, J., Lei, Y. & Li, P. P300, not feedback error-related negativity, manifests the waiting cost of receiving reward information. NeuroReport 25, 1044–1048. https://doi.org/10.1097/WNR.0000000000000226 (2014).
doi: 10.1097/WNR.0000000000000226 pubmed: 25004079
Stewardson, H. J. & Sambrook, T. D. Evidence for parietal reward prediction errors using great grand average meta-analysis. Int. J. Psychophysiol. 152, 81–86. https://doi.org/10.1016/j.ijpsycho.2020.03.002 (2020).
doi: 10.1016/j.ijpsycho.2020.03.002 pubmed: 32272127
Palminteri, S., Lefebvre, G., Kilford, E. J. & Blakemore, S.-J. Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing. PLOS Comput. Biol. 13, e1005684. https://doi.org/10.1371/journal.pcbi.1005684 (2017).
doi: 10.1371/journal.pcbi.1005684 pubmed: 28800597 pmcid: 5568446
Nieuwenhuis, S., Aston-Jones, G. & Cohen, J. D. Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol. Bull. 131, 510–532. https://doi.org/10.1037/0033-2909.131.4.510 (2005).
doi: 10.1037/0033-2909.131.4.510 pubmed: 16060800
Yeung, N. & Sanfey, A. G. Independent coding of reward magnitude and valence in the human brain. J. Neurosci. 24, 6258–6264. https://doi.org/10.1523/JNEUROSCI.4537-03.2004 (2004).
doi: 10.1523/JNEUROSCI.4537-03.2004 pubmed: 15254080 pmcid: 6729539
Palminteri, S. Choice-confirmation bias and gradual perseveration in human reinforcement learning. Behav. Neurosci. 137, 78–88. https://doi.org/10.1037/bne0000541 (2023).
doi: 10.1037/bne0000541 pubmed: 36395020
Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019 (2007).
doi: 10.1016/j.clinph.2007.04.019 pubmed: 17573239 pmcid: 2715154
Jepma, M. et al. Catecholaminergic regulation of learning rate in a dynamic environment. PLOS Comput. Biol. 12, e1005171. https://doi.org/10.1371/journal.pcbi.1005171 (2016).
doi: 10.1371/journal.pcbi.1005171 pubmed: 27792728 pmcid: 5085041
Cavanagh, J. F. Cortical delta activity reflects reward prediction error and related behavioral adjustments, but at different times. NeuroImage 110, 205–216. https://doi.org/10.1016/j.neuroimage.2015.02.007 (2015).
doi: 10.1016/j.neuroimage.2015.02.007 pubmed: 25676913
Wurm, F. et al. Task learnability modulates surprise but not valence processing for reinforcement learning in probabilistic choice tasks. J. Cognit. Neurosci. 34, 34–53. https://doi.org/10.1162/jocn_a_01777 (2021).
doi: 10.1162/jocn_a_01777
Sambrook, T. D. & Goslin, J. Principal components analysis of reward prediction errors in a reinforcement learning task. NeuroImage 124, 276–286. https://doi.org/10.1016/j.neuroimage.2015.07.032 (2016).
doi: 10.1016/j.neuroimage.2015.07.032 pubmed: 26196667
Bellebaum, C., Polezzi, D. & Daum, I. It is less than you expected: the feedback-related negativity reflects violations of reward magnitude expectations. Neuropsychologia 48, 3343–3350. https://doi.org/10.1016/j.neuropsychologia.2010.07.023 (2010).
doi: 10.1016/j.neuropsychologia.2010.07.023 pubmed: 20655319
Volpert-Esmond, H. I., Page-Gould, E. & Bartholow, B. D. Using multilevel models for the analysis of event-related potentials. Int. J. Psychophysiol. 162, 145–156. https://doi.org/10.1016/j.ijpsycho.2021.02.006 (2021).
doi: 10.1016/j.ijpsycho.2021.02.006 pubmed: 33600841 pmcid: 8050933
Green, P. & MacLeod, C. J. SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol. 7, 493–498. https://doi.org/10.1111/2041-210X.12504 (2016).
doi: 10.1111/2041-210X.12504
Sutton, R. S. & Barto, A. Reinforcement Learning (The MIT Press, 2018).
Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S. & Palminteri, S. Behavioural and neural characterization of optimistic reinforcement learning. Nat. Hum. Behav. 1, 0067. https://doi.org/10.1038/s41562-017-0067 (2017).
doi: 10.1038/s41562-017-0067
Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T. & Hutchison, K. E. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc. Natl. Acad. Sci. 104, 16311–16316. https://doi.org/10.1073/pnas.0706111104 (2007).
doi: 10.1073/pnas.0706111104 pubmed: 17913879 pmcid: 2042203
Chatrian, G. E., Lettich, E. & Nelson, P. L. Modified nomenclature for the “10%” electrode system. J. Clin. Neurophysiol. 5, 183–186 (1988).
doi: 10.1097/00004691-198804000-00005 pubmed: 3250964
Gratton, G., Coles, M. G. H. & Donchin, E. A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55, 468–484. https://doi.org/10.1016/0013-4694(83)90135-9 (1983).
doi: 10.1016/0013-4694(83)90135-9 pubmed: 6187540
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
doi: 10.18637/jss.v067.i01
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).
doi: 10.18637/jss.v082.i13
Voeten, C. Using ‘buildmer’ to automatically find & compare maximal (mixed) models (2020).
Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. Parsimonious mixed models (2015).
Sambrook, T. D. & Goslin, J. Mediofrontal event-related potentials in response to positive, negative and unsigned prediction errors. Neuropsychologia 61, 1–10. https://doi.org/10.1016/j.neuropsychologia.2014.06.004 (2014).
doi: 10.1016/j.neuropsychologia.2014.06.004 pubmed: 24946315

Auteurs

Constanze Weber (C)

Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University Düsseldorf, Universitätstraße 1, 40255, Düsseldorf, Germany. Constanze.Weber@hhu.de.

Christian Bellebaum (C)

Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University Düsseldorf, Universitätstraße 1, 40255, Düsseldorf, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH