Effects of sleep deprivation on food-related Pavlovian-instrumental transfer: a randomized crossover experiment.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 05 2024
01 05 2024
Historique:
received:
11
08
2023
accepted:
19
04
2024
medline:
2
5
2024
pubmed:
2
5
2024
entrez:
1
5
2024
Statut:
epublish
Résumé
Recent research suggests that insufficient sleep elevates the risk of obesity. Although the mechanisms underlying the relationship between insufficient sleep and obesity are not fully understood, preliminary evidence suggests that insufficient sleep may intensify habitual control of behavior, leading to greater cue-elicited food-seeking behavior that is insensitive to satiation. The present study tested this hypothesis using a within-individual, randomized, crossover experiment. Ninety-six adults underwent a one-night normal sleep duration (NSD) condition and a one-night total sleep deprivation (TSD) condition. They also completed the Pavlovian-instrumental transfer paradigm in which their instrumental responses for food in the presence and absence of conditioned cues were recorded. The sleep × cue × satiation interaction was significant, indicating that the enhancing effect of conditioned cues on food-seeking responses significantly differed across sleep × satiation conditions. However, this effect was observed in NSD but not TSD, and it disappeared after satiation. This finding contradicted the hypothesis but aligned with previous literature on the effect of sleep disruption on appetitive conditioning in animals-sleep disruption following learning impaired the expression of appetitive behavior. The present finding is the first evidence for the role of sleep in Pavlovian-instrumental transfer effects. Future research is needed to further disentangle how sleep influences motivational mechanisms underlying eating.
Identifiants
pubmed: 38693322
doi: 10.1038/s41598-024-60223-2
pii: 10.1038/s41598-024-60223-2
doi:
Types de publication
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10029Subventions
Organisme : University of Hong Kong
ID : #201904159003
Informations de copyright
© 2024. The Author(s).
Références
Chattu, V. K. et al. The global problem of insufficient sleep and its serious public health implications. Healthcare 7, 1 (2018).
pubmed: 30577441
pmcid: 6473877
doi: 10.3390/healthcare7010001
Hirshkowitz, M. et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 1, 40–43 (2015).
pubmed: 29073412
doi: 10.1016/j.sleh.2014.12.010
Krueger, P. M. & Friedman, E. M. Sleep duration in the United States: A cross-sectional population-based study. Am. J. Epidemiol. 169, 1052–1063 (2009).
pubmed: 19299406
pmcid: 2727237
doi: 10.1093/aje/kwp023
Reis, C. et al. Sleep duration, lifestyles and chronic diseases: A cross-sectional population-based study. Sleep Sci. 11, 217 (2018).
pubmed: 30746039
pmcid: 6361301
doi: 10.5935/1984-0063.20180036
Seidell, J. C. & Halberstadt, J. The global burden of obesity and the challenges of prevention. Ann. Nutr. Metab. 66, 7–12 (2015).
pubmed: 26045323
doi: 10.1159/000375143
Cappuccio, F. et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 31, 619–626 (2008).
pubmed: 18517032
pmcid: 2398753
doi: 10.1093/sleep/31.5.619
Owens, J. et al. Insufficient sleep in adolescents and young adults: An update on causes and consequences. Pediatrics 134, e921–e932 (2014).
pubmed: 25157012
doi: 10.1542/peds.2014-1696
Patel, S. R. & Hu, F. B. Short sleep duration and weight gain: A systematic review. Obesity 16, 643–653 (2008).
pubmed: 18239586
doi: 10.1038/oby.2007.118
Chaput, J.-P. Sleep patterns, diet quality and energy balance. Physiol. Behav. 134, 86–91 (2014).
pubmed: 24051052
doi: 10.1016/j.physbeh.2013.09.006
Benedict, C. et al. Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: An fMRI study. J. Clin. Endocrinol. Metab. 97, 443 (2012).
doi: 10.1210/jc.2011-2759
Calvin, A. D. et al. Effects of experimental sleep restriction on caloric intake and activity energy expenditure. Chest 144, 79–86 (2013).
pubmed: 23392199
pmcid: 3707179
doi: 10.1378/chest.12-2829
Chapman, C. D. et al. Acute sleep deprivation increases food purchasing in men. Obesity 21, E555–E560 (2013).
pubmed: 23908148
doi: 10.1002/oby.20579
Demos, K. E. et al. The effects of experimental manipulation of sleep duration on neural response to food cues. Sleep 40, 11 (2017).
doi: 10.1093/sleep/zsx125
St-Onge, M. P. et al. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am. J. Clin. Nutr. 95, 818–824 (2012).
pubmed: 22357722
pmcid: 3302360
doi: 10.3945/ajcn.111.027383
Al-Khatib, H. K., Harding, S. V., Darzi, J. & Pot, G. K. The effects of partial sleep deprivation on energy balance: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 71, 614–624 (2017).
pubmed: 27804960
doi: 10.1038/ejcn.2016.201
Dzaja, A. et al. Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. Am. J. Physiol. Endocrinol. Metab. 286, 963–967 (2004).
doi: 10.1152/ajpendo.00527.2003
Schmid, S. M., Hallschmid, M., Jauch-Chara, K., Born, J. & Schultes, B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J. Sleep Res. 17, 331–334 (2008).
pubmed: 18564298
doi: 10.1111/j.1365-2869.2008.00662.x
Felső, R. et al. Total sleep deprivation decreases saliva ghrelin levels in adolescents. J Sleep Res. 32, 13746. https://doi.org/10.1111/JSR.13746 (2022).
doi: 10.1111/JSR.13746
Duraccio, K. M. R. et al. Losing sleep by staying up late leads adolescents to consume more carbohydrates and a higher glycemic load. Sleep 45, 3 (2022).
doi: 10.1093/sleep/zsab269
Greer, S. M., Goldstein, A. N. & Walker, M. P. The impact of sleep deprivation on food desire in the human brain. Nat. Commun. 4, 1–7 (2013).
doi: 10.1038/ncomms3259
Hogenkamp, P. S. et al. Acute sleep deprivation increases portion size and affects food choice in young men. Psychoneuroendocrinology 38, 1668–1674 (2013).
pubmed: 23428257
doi: 10.1016/j.psyneuen.2013.01.012
St-Onge, M. P., Wolfe, S., Sy, M., Shechter, A. & Hirsch, J. Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals. Int. J. Obes. 38, 411–416 (2014).
doi: 10.1038/ijo.2013.114
Lowe, M. R. & Butryn, M. L. Hedonic hunger: A new dimension of appetite?. Physiol. Behav. 91, 432–439 (2007).
pubmed: 17531274
doi: 10.1016/j.physbeh.2007.04.006
Gardner, B. A review and analysis of the use of ‘habit’ in understanding, predicting and influencing health-related behaviour. Health Psychol. Rev. 9, 277–295 (2015).
pubmed: 25207647
doi: 10.1080/17437199.2013.876238
Finlayson, G., King, N. & Blundell, J. E. Liking vs wanting food: Importance for human appetite control and weight regulation. Neurosci. Biobehav. Rev. 31, 987–1002 (2007).
pubmed: 17559933
doi: 10.1016/j.neubiorev.2007.03.004
Pierce-Messick, Z. & Corbit, L. H. Problematic eating as an issue of habitual control. Prog. Neuropsychopharmacol. Biol. Psychiatry 110, 110294 (2021).
pubmed: 33662535
doi: 10.1016/j.pnpbp.2021.110294
Feig, E. H., Piers, A. D., Kral, T. V. E. & Lowe, M. R. Eating in the absence of hunger is related to loss-of-control eating, hedonic hunger, and short-term weight gain in normal-weight women. Appetite 123, 317–324 (2018).
pubmed: 29331366
doi: 10.1016/j.appet.2018.01.013
Horstmann, A. et al. Slave to habit? Obesity is associated with decreased behavioural sensitivity to reward devaluation. Appetite 87, 175–183 (2015).
pubmed: 25543077
doi: 10.1016/j.appet.2014.12.212
Dickinson, A. Actions and habits: The development of behavioural autonomy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 308, 67–78 (1985).
doi: 10.1098/rstb.1985.0010
Perez, O. D. & Dickinson, A. A theory of actions and habits: The interaction of rate correlation and contiguity systems in free-operant behavior. Psychol. Rev. 127, 945–971 (2020).
pubmed: 32406713
doi: 10.1037/rev0000201
Corbit, L. H. Understanding the balance between goal-directed and habitual behavioral control. Curr. Opin. Behav. Sci. 20, 161–168 (2018).
doi: 10.1016/j.cobeha.2018.01.010
Jackson, M. L. et al. Deconstructing and reconstructing cognitive performance in sleep deprivation. Sleep Med. Rev. 17, 215–225 (2014).
doi: 10.1016/j.smrv.2012.06.007
Yannakoulia, M. et al. Sleep quality is associated with weight loss maintenance status: The MedWeight study. Sleep Med. 34, 242–245 (2017).
pubmed: 28476339
doi: 10.1016/j.sleep.2017.01.023
Chen, J. et al. Sleep deprivation promotes habitual control over goal-directed control: Behavioral and neuroimaging evidence. J. Neurosci. 37, 11979–11992 (2017).
pubmed: 29109237
pmcid: 6596829
doi: 10.1523/JNEUROSCI.1612-17.2017
Boddez, Y., Buabang, E. K., Zenses, A.-K. & Descheemaeker, M. Commentary: Sleep deprivation promotes habitual control over goal-directed control: Behavioral and neuroimaging evidence. Front. Behav. Neurosci. 12, 1–3 (2018).
doi: 10.3389/fnbeh.2018.00082
Stojek, M. K., Fischer, S. & MacKillop, J. Stress, cues, and eating behavior. Using drug addiction paradigms to understand motivation for food. Appetite 92, 252–260 (2015).
pubmed: 26022802
doi: 10.1016/j.appet.2015.05.027
Cartoni, E., Balleine, B. & Baldassarre, G. Appetitive Pavlovian-instrumental transfer: A review. Neurosci. Biobehav. Rev. 71, 829–848 (2016).
pubmed: 27693227
doi: 10.1016/j.neubiorev.2016.09.020
Quail, S. L., Morris, R. W. & Balleine, B. W. Stress associated changes in Pavlovian-instrumental transfer in humans. Q. J. Exp. Psychol. 70, 675–685 (2017).
doi: 10.1080/17470218.2016.1149198
Watson, P., Wiers, R. W., Hommel, B. & De Wit, S. Working for food you don’t desire. Cues interfere with goal-directed food-seeking. Appetite 79, 139–148 (2014).
pubmed: 24743030
doi: 10.1016/j.appet.2014.04.005
Watson, P., Wiers, R. W., Hommel, B., Gerdes, V. E. A. & de Wit, S. Stimulus control over action for food in obese versus healthy-weight individuals. Front. Psychol. 8, 1–13 (2017).
doi: 10.3389/fpsyg.2017.00580
Kavaliotis, E. et al. The relationship between sleep and appetitive conditioning: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 144, 105001 (2023).
pubmed: 36529310
doi: 10.1016/j.neubiorev.2022.105001
Hanlon, E. C., Andrzejewski, M. E., Harder, B. K., Kelley, A. E. & Benca, R. M. The effect of REM sleep deprivation on motivation for food reward. Behav. Brain Res. 163, 58–69 (2005).
pubmed: 15967514
doi: 10.1016/j.bbr.2005.04.017
Everitt, B. J. & Robbins, T. W. Drug addiction: Updating actions to habits to compulsions ten years on. Annu. Rev. Psychol. https://doi.org/10.1146/annurev-psych-122414-03345767,23-50 (2016).
doi: 10.1146/annurev-psych-122414-03345767,23-50
pubmed: 26253543
Mahlberg, J. et al. Human appetitive Pavlovian-to-instrumental transfer: A goal-directed account. Psychol. Res. 85, 449–463 (2021).
pubmed: 31720789
doi: 10.1007/s00426-019-01266-3
Buabang, E. K., Boddez, Y., Wolf, O. T. & Moors, A. The Role of goal-directed and habitual processes in food consumption under stress after outcome devaluation with taste aversion. Behav. Neurosci. https://doi.org/10.1037/bne0000439 (2022).
doi: 10.1037/bne0000439
pubmed: 36190750
Moors, A., Boddez, Y. & De Houwer, J. The power of goal-directed processes in the causation of emotional and other actions. Emotion Rev. 9, 310–318 (2017).
doi: 10.1177/1754073916669595
de Wit, S. et al. Shifting the balance between goals and habits: Five failures in experimental habit induction. J. Exp Psychol. Gen. 147, 1043–1065 (2018).
pubmed: 29975092
pmcid: 6033090
doi: 10.1037/xge0000402
Corbit, L. H. & Balleine, B. W. Instrumental and Pavlovian incentive processes have dissociable effects on components of a heterogeneous instrumental chain. J. Exp. Psychol. Anim. Behav. Process. 29, 99–106 (2003).
pubmed: 12735274
doi: 10.1037/0097-7403.29.2.99
Nedeltcheva, A. V. et al. Sleep curtailment is accompanied by increased intake of calories from snacks. Am. J. Clin. Nutr. 89, 126–133 (2009).
pubmed: 19056602
doi: 10.3945/ajcn.2008.26574
Chan, W. S. Daily associations between objective sleep and consumption of highly palatable food in free-living conditions. Obes. Sci. Pract. 4, 379–386 (2018).
pubmed: 30151232
pmcid: 6105709
doi: 10.1002/osp4.281
Chan, W. S. Effects of sleep deprivation on habitual control of food-seeking: A randomized crossover experiment—data and codes. In HKU Data Repository. Dataset (2013).
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213 (1989).
pubmed: 2748771
doi: 10.1016/0165-1781(89)90047-4
Tsai, P. S. et al. Psychometric evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects. Qual. Life Res. 14, 1943–1952 (2005).
pubmed: 16155782
doi: 10.1007/s11136-005-4346-x
Horne, J. A. & Ostberg, O. A self assessment questionnaire to determine Morningness Eveningness in human circadian rhythms. Int. J. Chronobiol. 4, 97–110 (1976).
pubmed: 1027738
Stice, E., Telch, C. F. & Rizvi, S. L. Development and validation of the eating disorder diagnostic scale: A brief self-report measure of anorexia, bulimia, and binge-eating disorder. Psychol. Assess. 12, 123–131 (2000).
pubmed: 10887758
doi: 10.1037/1040-3590.12.2.123
Lovibond, S. H. & Lovibond, P. F. Manual for the Depression, Anxiety and Stress Scale-21 items (DASS-21). In Manual for the Depression Anxiety & Stress Scales (1995).
Allen, S., McBride, C. & Pirie, P. The shortened premenstrual assessment form. J. Reprod. Med. 36, 769–772 (1991).
pubmed: 1765953
Reed, S. C., Levin, F. R. & Evans, S. M. Changes in mood, cognitive performance and appetite in the late luteal and follicular phases of the menstrual cycle in women with and without PMDD (premenstrual dysphoric disorder). Horm. Behav. 54, 185–193 (2008).
pubmed: 18413151
pmcid: 2491904
doi: 10.1016/j.yhbeh.2008.02.018
Gearhardt, A. N. & Schulte, E. M. Is food addictive? A review of the science. Annu. Rev. Nutr. 41, 387–410 (2021).
pubmed: 34152831
doi: 10.1146/annurev-nutr-110420-111710
Fazzino, T. L., Rohde, K. & Sullivan, D. K. Hyper-Palatable foods: Development of a quantitative definition and application to the US food system database. Obesity 27, 1761–1768 (2019).
pubmed: 31689013
doi: 10.1002/oby.22639
Moussa, M. T., Lovibond, P. F. & Laube, R. Psychometric Properties of a Chinese Version of the 21-Item Depression Anxiety Stress Scales (DASS21) (2001).
Owen, A. M., McMillan, K. M., Laird, A. R. & Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25, 46–59 (2005).
pubmed: 15846822
pmcid: 6871745
doi: 10.1002/hbm.20131
Wessel, J. R. Prepotent motor activity and inhibitory control demands in different variants of the go/no-go paradigm. Psychophysiology 55, 1–14 (2018).
doi: 10.1111/psyp.12871
Johnson, M. W. & Bickel, W. K. Within-subject comparison of real and hypothetical money rewards in delay discounting. J. Exp. Anal. Behav. 77, 129–146 (2002).
pubmed: 11936247
pmcid: 1284852
doi: 10.1901/jeab.2002.77-129