Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
May 2024
Historique:
received: 08 12 2023
accepted: 07 03 2024
medline: 2 5 2024
pubmed: 2 5 2024
entrez: 1 5 2024
Statut: ppublish

Résumé

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts

Identifiants

pubmed: 38693411
doi: 10.1038/s41586-024-07284-5
pii: 10.1038/s41586-024-07284-5
doi:

Substances chimiques

Amino Acids 0
Glycine TE7660XO1C
Pyridoxal Phosphate 5V5IOJ8338
Glycine Hydroxymethyltransferase EC 2.1.2.1
Free Radicals 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

98-104

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).
pubmed: 37115521 pmcid: 10905417 doi: 10.1021/acs.chemrev.2c00767
Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).
pubmed: 27974767 doi: 10.1038/nature20569
Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).
doi: 10.1038/s41929-022-00777-4
Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).
pubmed: 32512577 doi: 10.1038/s41586-020-2406-6
Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. J. Am. Chem. Soc. 143, 97–102 (2021).
pubmed: 33369395 doi: 10.1021/jacs.0c11462
Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166 (2019).
pubmed: 31221855 pmcid: 7028431 doi: 10.1126/science.aaw1143
Fu, H. et al. An asymmetric sp
pubmed: 35952713 pmcid: 10157439 doi: 10.1038/s41586-022-05167-1
Ye, Y. et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat. Chem. 15, 206–212 (2023).
pubmed: 36376390 doi: 10.1038/s41557-022-01083-z
Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 381, 444–451 (2023).
pubmed: 37499030 doi: 10.1126/science.adg2420
Liu, J.-Q. et al. Diversity of microbial threonine aldolases and their application. J. Mol. Catal. B: Enzym. 10, 107–115 (2000).
doi: 10.1016/S1381-1177(00)00118-1
Dückers, N., Baer, K., Simon, S., Gröger, H. & Hummel, W. Threonine aldolases—screening, properties and applications in the synthesis of non-proteinogenic β-hydroxy-α-amino acids. Appl. Microbiol. Biotechnol. 88, 409–424 (2010).
pubmed: 20683718 doi: 10.1007/s00253-010-2751-8
Fesko, K., Strohmeier, G. A. & Breinbauer, R. Expanding the threonine aldolase toolbox for the asymmetric synthesis of tertiary α-amino acids. Appl. Microbiol. Biotechnol. 99, 9651–9661 (2015).
pubmed: 26189018 doi: 10.1007/s00253-015-6803-y
Nájera, C. & Sansano, J. M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev. 107, 4584–4671 (2007).
pubmed: 17915933 doi: 10.1021/cr050580o
Almhjell, P. J., Boville, C. E. & Arnold, F. H. Engineering enzymes for noncanonical amino acid synthesis. Chem. Soc. Rev. 47, 8980–8997 (2018).
pubmed: 30280154 pmcid: 6434697 doi: 10.1039/C8CS00665B
Hickey, J. L., Sindhikara, D., Zultanski, S. L. & Schultz, D. M. Beyond 20 in the 21st century: prospects and challenges of non-canonical amino acids in peptide drug discovery. ACS Med. Chem. Lett. 14, 557–565 (2023).
pubmed: 37197469 doi: 10.1021/acsmedchemlett.3c00037
Lei, A. et al. Oxidative Cross-Coupling Reactions 1st edn (Wiley, 2016).
Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).
Fu, Y. et al. Engineered P450 atom-transfer radical cyclases are bifunctional biocatalysts: reaction mechanism and origin of enantioselectivity. J. Am. Chem. Soc. 144, 13344–13355 (2022).
pubmed: 35830682 pmcid: 9339536 doi: 10.1021/jacs.2c04937
Fu, W. et al. Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis. Nat. Catal. 6, 628–636 (2023).
pubmed: 38404758 doi: 10.1038/s41929-023-00986-5
Eliot, A. C. & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415 (2004).
pubmed: 15189147 doi: 10.1146/annurev.biochem.73.011303.074021
Du, Y.-L. & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep. 36, 430–457 (2019).
pubmed: 30183796 doi: 10.1039/C8NP00049B
Hedges, J. B. & Ryan, K. S. Biosynthetic pathways to nonproteinogenic α-amino acids. Chem. Rev. 120, 3161–3209 (2020).
pubmed: 31869221 doi: 10.1021/acs.chemrev.9b00408
Dumas, A., Lercher, L., Spicer, C. D. & Davis, B. G. Designing logical codon reassignment – expanding the chemistry in biology. Chem. Sci. 6, 50–69 (2015).
pubmed: 28553457 doi: 10.1039/C4SC01534G
Wang, Q., Gu, Q. & You, S.-L. Enantioselective carbonyl catalysis enabled by chiral aldehydes. Angew. Chem. Int. Ed. 58, 6818–6825 (2019).
doi: 10.1002/anie.201808700
Maier, T. H. P. Semisynthetic production of unnatural L-α-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat. Biotechnol. 21, 422–427 (2003).
pubmed: 12640465 doi: 10.1038/nbt807
Phillips, R. S. Synthetic applications of tryptophan synthase. Tetrahedron: Asymmetry 15, 2787–2792 (2004).
doi: 10.1016/j.tetasy.2004.06.054
Hai, Y., Chen, M., Huang, A. & Tang, Y. Biosynthesis of mycotoxin fusaric acid and application of a PLP-dependent enzyme for chemoenzymatic synthesis of substituted L-pipecolic acids. J. Am. Chem. Soc. 142, 19668–19677 (2020).
pubmed: 33155797 pmcid: 8093010 doi: 10.1021/jacs.0c09352
Frey, P. A. & Reed, G. H. Pyridoxal-5′-phosphate as the catalyst for radical isomerization in reactions of PLP-dependent aminomutases. Biochim. Biophys. Acta 1814, 1548–1557 (2011).
pubmed: 21435400 doi: 10.1016/j.bbapap.2011.03.005
Hoffarth, E. R., Rothchild, K. W. & Ryan, K. S. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J. 287, 1403–1428 (2020).
pubmed: 32142210 doi: 10.1111/febs.15277
Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).
pubmed: 20532341 doi: 10.1039/B913880N
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).
pubmed: 23509883 pmcid: 4028850 doi: 10.1021/cr300503r
Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).
pubmed: 27285582 doi: 10.1021/acs.chemrev.6b00057
Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).
pubmed: 27109441 pmcid: 5083252 doi: 10.1021/acs.chemrev.6b00018
Contestabile, R. et al. L-threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase. Eur. J. Biochem. 268, 6508–6525 (2001).
pubmed: 11737206 doi: 10.1046/j.0014-2956.2001.02606.x
Schaffer, J. E., Reck, M. R., Prasad, N. K. & Wencewicz, T. A. β-Lactone formation during product release from a nonribosomal peptide synthetase. Nat. Chem. Biol. 13, 737–744 (2017).
pubmed: 28504677 doi: 10.1038/nchembio.2374
Scott, T. A., Heine, D., Qin, Z. & Wilkinson, B. An L-threonine transaldolase is required for L-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Nat. Comm. 8, 15935 (2017).
doi: 10.1038/ncomms15935
Xu, L., Wang, L.-C., Xu, X.-Q. & Lin, J. Characteristics of L-threonine transaldolase for asymmetric synthesis of β-hydroxy-α-amino acids. Catal. Sci. Technol. 9, 5943–5952 (2019).
doi: 10.1039/C9CY01608B
Kumar, P. et al. L-threonine transaldolase activity is enabled by a persistent catalytic intermediate. ACS Chem. Biol. 16, 86–95 (2021).
pubmed: 33337128 doi: 10.1021/acschembio.0c00753
Gao, J. et al. A pyridoxal 5′-phosphate-dependent Mannich cyclase. Nat. Catal. 6, 476–486 (2023).
doi: 10.1038/s41929-023-00963-y
Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B. & Barigelletti, F. in Photochemistry and Photophysics of Coordination Compounds II (eds Balzani, V. & Campagna, S.) 143–203 (Springer, 2007).
Bard, A. J. et al. (eds) Standard Potentials in Aqueous Aolution 1st edn (Routledge, 1985).
Liu, J.-Q. et al. Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity L-threonine aldolase from Escherichia coli. Eur. J. Biochem. 255, 220–226 (1998).
pubmed: 9692922 doi: 10.1046/j.1432-1327.1998.2550220.x
Liu, J. Q., Dairi, T., Kataoka, M., Shimizu, S. & Yamada, H. L-allo-threonine aldolase from Aeromonas jandaei DK-39: gene cloning, nucleotide sequencing, and identification of the pyridoxal 5’-phosphate-binding lysine residue by site-directed mutagenesis. J. Bacteriol. 179, 3555–3560 (1997).
pubmed: 9171400 pmcid: 179148 doi: 10.1128/jb.179.11.3555-3560.1997
Fesko, K., Uhl, M., Steinreiber, J., Gruber, K. & Griengl, H. Biocatalytic access to α,α-dialkyl-α-amino acids by a mechanism-based approach. Angew. Chem. Int. Ed. 49, 121–124 (2010).
doi: 10.1002/anie.200904395
Kielkopf, C. L. & Burley, S. K. X-ray structures of threonine aldolase complexes: structural basis of substrate recognition. Biochemistry 41, 11711–11720 (2002).
pubmed: 12269813 doi: 10.1021/bi020393+
Li, F., Yang, L.-C., Zhang, J., Chen, J. S. & Renata, H. Stereoselective synthesis of β-branched aromatic α-amino acids by biocatalytic dynamic kinetic resolution. Angew. Chem. Int. Ed. 60, 17680–17685 (2021).
doi: 10.1002/anie.202105656
Guo, F. & Berglund, P. Transaminase biocatalysis: optimization and application. Green Chem. 19, 333–360 (2017).
doi: 10.1039/C6GC02328B
Parmeggiani, F., Weise, N. J., Ahmed, S. T. & Turner, N. J. Synthetic and therapeutic applications of ammonia-lyases and aminomutases. Chem. Rev. 118, 73–118 (2018).
pubmed: 28497955 doi: 10.1021/acs.chemrev.6b00824
Lennox, A. J. J., Nutting, J. E. & Stahl, S. S. Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. Chem. Sci. 9, 356–361 (2018).
pubmed: 29732109 doi: 10.1039/C7SC04032F
Tantillo, D. J., Chen, J. & Houk, K. N. Theozymes and compuzymes: theoretical models for biological catalysis. Curr. Opin. Chem. Biol. 2, 743–750 (1998).
pubmed: 9914196 doi: 10.1016/S1367-5931(98)80112-9

Auteurs

Tian-Ci Wang (TC)

Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.

Binh Khanh Mai (BK)

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.

Zheng Zhang (Z)

Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.

Zhiyu Bo (Z)

Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.

Jiedong Li (J)

Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.

Peng Liu (P)

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA. pengliu@pitt.edu.

Yang Yang (Y)

Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA. yang@chem.ucsb.edu.
Biomolecular Science and Engineering (BMSE) Program, University of California Santa Barbara, Santa Barbara, CA, USA. yang@chem.ucsb.edu.

Articles similaires

Fragaria Light Plant Leaves Osmosis Stress, Physiological

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Risk Assessment Plant Leaves Isomerism Humans Stereoisomerism
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice

Classifications MeSH