Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
May 2024
May 2024
Historique:
received:
08
12
2023
accepted:
07
03
2024
medline:
2
5
2024
pubmed:
2
5
2024
entrez:
1
5
2024
Statut:
ppublish
Résumé
Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts
Identifiants
pubmed: 38693411
doi: 10.1038/s41586-024-07284-5
pii: 10.1038/s41586-024-07284-5
doi:
Substances chimiques
Amino Acids
0
Glycine
TE7660XO1C
Pyridoxal Phosphate
5V5IOJ8338
Glycine Hydroxymethyltransferase
EC 2.1.2.1
Free Radicals
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
98-104Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).
pubmed: 37115521
pmcid: 10905417
doi: 10.1021/acs.chemrev.2c00767
Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).
pubmed: 27974767
doi: 10.1038/nature20569
Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).
doi: 10.1038/s41929-022-00777-4
Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).
pubmed: 32512577
doi: 10.1038/s41586-020-2406-6
Page, C. G. et al. Quaternary charge-transfer complex enables photoenzymatic intermolecular hydroalkylation of olefins. J. Am. Chem. Soc. 143, 97–102 (2021).
pubmed: 33369395
doi: 10.1021/jacs.0c11462
Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166 (2019).
pubmed: 31221855
pmcid: 7028431
doi: 10.1126/science.aaw1143
Fu, H. et al. An asymmetric sp
pubmed: 35952713
pmcid: 10157439
doi: 10.1038/s41586-022-05167-1
Ye, Y. et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat. Chem. 15, 206–212 (2023).
pubmed: 36376390
doi: 10.1038/s41557-022-01083-z
Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 381, 444–451 (2023).
pubmed: 37499030
doi: 10.1126/science.adg2420
Liu, J.-Q. et al. Diversity of microbial threonine aldolases and their application. J. Mol. Catal. B: Enzym. 10, 107–115 (2000).
doi: 10.1016/S1381-1177(00)00118-1
Dückers, N., Baer, K., Simon, S., Gröger, H. & Hummel, W. Threonine aldolases—screening, properties and applications in the synthesis of non-proteinogenic β-hydroxy-α-amino acids. Appl. Microbiol. Biotechnol. 88, 409–424 (2010).
pubmed: 20683718
doi: 10.1007/s00253-010-2751-8
Fesko, K., Strohmeier, G. A. & Breinbauer, R. Expanding the threonine aldolase toolbox for the asymmetric synthesis of tertiary α-amino acids. Appl. Microbiol. Biotechnol. 99, 9651–9661 (2015).
pubmed: 26189018
doi: 10.1007/s00253-015-6803-y
Nájera, C. & Sansano, J. M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev. 107, 4584–4671 (2007).
pubmed: 17915933
doi: 10.1021/cr050580o
Almhjell, P. J., Boville, C. E. & Arnold, F. H. Engineering enzymes for noncanonical amino acid synthesis. Chem. Soc. Rev. 47, 8980–8997 (2018).
pubmed: 30280154
pmcid: 6434697
doi: 10.1039/C8CS00665B
Hickey, J. L., Sindhikara, D., Zultanski, S. L. & Schultz, D. M. Beyond 20 in the 21st century: prospects and challenges of non-canonical amino acids in peptide drug discovery. ACS Med. Chem. Lett. 14, 557–565 (2023).
pubmed: 37197469
doi: 10.1021/acsmedchemlett.3c00037
Lei, A. et al. Oxidative Cross-Coupling Reactions 1st edn (Wiley, 2016).
Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).
Fu, Y. et al. Engineered P450 atom-transfer radical cyclases are bifunctional biocatalysts: reaction mechanism and origin of enantioselectivity. J. Am. Chem. Soc. 144, 13344–13355 (2022).
pubmed: 35830682
pmcid: 9339536
doi: 10.1021/jacs.2c04937
Fu, W. et al. Enzyme-controlled stereoselective radical cyclization to arenes enabled by metalloredox biocatalysis. Nat. Catal. 6, 628–636 (2023).
pubmed: 38404758
doi: 10.1038/s41929-023-00986-5
Eliot, A. C. & Kirsch, J. F. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 73, 383–415 (2004).
pubmed: 15189147
doi: 10.1146/annurev.biochem.73.011303.074021
Du, Y.-L. & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep. 36, 430–457 (2019).
pubmed: 30183796
doi: 10.1039/C8NP00049B
Hedges, J. B. & Ryan, K. S. Biosynthetic pathways to nonproteinogenic α-amino acids. Chem. Rev. 120, 3161–3209 (2020).
pubmed: 31869221
doi: 10.1021/acs.chemrev.9b00408
Dumas, A., Lercher, L., Spicer, C. D. & Davis, B. G. Designing logical codon reassignment – expanding the chemistry in biology. Chem. Sci. 6, 50–69 (2015).
pubmed: 28553457
doi: 10.1039/C4SC01534G
Wang, Q., Gu, Q. & You, S.-L. Enantioselective carbonyl catalysis enabled by chiral aldehydes. Angew. Chem. Int. Ed. 58, 6818–6825 (2019).
doi: 10.1002/anie.201808700
Maier, T. H. P. Semisynthetic production of unnatural L-α-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat. Biotechnol. 21, 422–427 (2003).
pubmed: 12640465
doi: 10.1038/nbt807
Phillips, R. S. Synthetic applications of tryptophan synthase. Tetrahedron: Asymmetry 15, 2787–2792 (2004).
doi: 10.1016/j.tetasy.2004.06.054
Hai, Y., Chen, M., Huang, A. & Tang, Y. Biosynthesis of mycotoxin fusaric acid and application of a PLP-dependent enzyme for chemoenzymatic synthesis of substituted L-pipecolic acids. J. Am. Chem. Soc. 142, 19668–19677 (2020).
pubmed: 33155797
pmcid: 8093010
doi: 10.1021/jacs.0c09352
Frey, P. A. & Reed, G. H. Pyridoxal-5′-phosphate as the catalyst for radical isomerization in reactions of PLP-dependent aminomutases. Biochim. Biophys. Acta 1814, 1548–1557 (2011).
pubmed: 21435400
doi: 10.1016/j.bbapap.2011.03.005
Hoffarth, E. R., Rothchild, K. W. & Ryan, K. S. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J. 287, 1403–1428 (2020).
pubmed: 32142210
doi: 10.1111/febs.15277
Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).
pubmed: 20532341
doi: 10.1039/B913880N
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).
pubmed: 23509883
pmcid: 4028850
doi: 10.1021/cr300503r
Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).
pubmed: 27285582
doi: 10.1021/acs.chemrev.6b00057
Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).
pubmed: 27109441
pmcid: 5083252
doi: 10.1021/acs.chemrev.6b00018
Contestabile, R. et al. L-threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase. Eur. J. Biochem. 268, 6508–6525 (2001).
pubmed: 11737206
doi: 10.1046/j.0014-2956.2001.02606.x
Schaffer, J. E., Reck, M. R., Prasad, N. K. & Wencewicz, T. A. β-Lactone formation during product release from a nonribosomal peptide synthetase. Nat. Chem. Biol. 13, 737–744 (2017).
pubmed: 28504677
doi: 10.1038/nchembio.2374
Scott, T. A., Heine, D., Qin, Z. & Wilkinson, B. An L-threonine transaldolase is required for L-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Nat. Comm. 8, 15935 (2017).
doi: 10.1038/ncomms15935
Xu, L., Wang, L.-C., Xu, X.-Q. & Lin, J. Characteristics of L-threonine transaldolase for asymmetric synthesis of β-hydroxy-α-amino acids. Catal. Sci. Technol. 9, 5943–5952 (2019).
doi: 10.1039/C9CY01608B
Kumar, P. et al. L-threonine transaldolase activity is enabled by a persistent catalytic intermediate. ACS Chem. Biol. 16, 86–95 (2021).
pubmed: 33337128
doi: 10.1021/acschembio.0c00753
Gao, J. et al. A pyridoxal 5′-phosphate-dependent Mannich cyclase. Nat. Catal. 6, 476–486 (2023).
doi: 10.1038/s41929-023-00963-y
Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B. & Barigelletti, F. in Photochemistry and Photophysics of Coordination Compounds II (eds Balzani, V. & Campagna, S.) 143–203 (Springer, 2007).
Bard, A. J. et al. (eds) Standard Potentials in Aqueous Aolution 1st edn (Routledge, 1985).
Liu, J.-Q. et al. Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity L-threonine aldolase from Escherichia coli. Eur. J. Biochem. 255, 220–226 (1998).
pubmed: 9692922
doi: 10.1046/j.1432-1327.1998.2550220.x
Liu, J. Q., Dairi, T., Kataoka, M., Shimizu, S. & Yamada, H. L-allo-threonine aldolase from Aeromonas jandaei DK-39: gene cloning, nucleotide sequencing, and identification of the pyridoxal 5’-phosphate-binding lysine residue by site-directed mutagenesis. J. Bacteriol. 179, 3555–3560 (1997).
pubmed: 9171400
pmcid: 179148
doi: 10.1128/jb.179.11.3555-3560.1997
Fesko, K., Uhl, M., Steinreiber, J., Gruber, K. & Griengl, H. Biocatalytic access to α,α-dialkyl-α-amino acids by a mechanism-based approach. Angew. Chem. Int. Ed. 49, 121–124 (2010).
doi: 10.1002/anie.200904395
Kielkopf, C. L. & Burley, S. K. X-ray structures of threonine aldolase complexes: structural basis of substrate recognition. Biochemistry 41, 11711–11720 (2002).
pubmed: 12269813
doi: 10.1021/bi020393+
Li, F., Yang, L.-C., Zhang, J., Chen, J. S. & Renata, H. Stereoselective synthesis of β-branched aromatic α-amino acids by biocatalytic dynamic kinetic resolution. Angew. Chem. Int. Ed. 60, 17680–17685 (2021).
doi: 10.1002/anie.202105656
Guo, F. & Berglund, P. Transaminase biocatalysis: optimization and application. Green Chem. 19, 333–360 (2017).
doi: 10.1039/C6GC02328B
Parmeggiani, F., Weise, N. J., Ahmed, S. T. & Turner, N. J. Synthetic and therapeutic applications of ammonia-lyases and aminomutases. Chem. Rev. 118, 73–118 (2018).
pubmed: 28497955
doi: 10.1021/acs.chemrev.6b00824
Lennox, A. J. J., Nutting, J. E. & Stahl, S. S. Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. Chem. Sci. 9, 356–361 (2018).
pubmed: 29732109
doi: 10.1039/C7SC04032F
Tantillo, D. J., Chen, J. & Houk, K. N. Theozymes and compuzymes: theoretical models for biological catalysis. Curr. Opin. Chem. Biol. 2, 743–750 (1998).
pubmed: 9914196
doi: 10.1016/S1367-5931(98)80112-9